Ir al contenido principal

Virus protectores de orugas

Las larvas de lepidópteros —grupo taxonómico al que pertenecen las polillas y mariposas— no tienen una vida fácil. Por un lado, son infectadas por virus que controlan sus movimientos y las disuelven desde su interior; y, por otro, son usados como nidos y alimento de larvas de avispas parasitoides. Es cierto que algunas son plagas de diversos cultivos y no merecen nuestra mayor consideración, como es el caso del gusano cogollero (Spodoptera frugiperda); pero otras se convierten en bellas mariposas que cumplen roles importantes en el ecosistema. 

Esta competencia entre virus y avispas parasitoides por someter a las pobres orugas generó un interesante proceso evolutivo que fue descrito en un reciente estudio publicado en Science. Las orugas infectadas por ciertos tipos de virus producían unas proteínas conocidas como factores de muerte de parasitoides (PKF, por sus siglas en inglés), que son tóxicas para las larvas de las avispas que se desarrollan en su interior. Es decir, las orugas se vuelven resistentes a sus avispas parasitoides.

Las PKF ya eran conocidas hace varias décadas, pero no se sabía de dónde procedían. Al analizar los genes que las codifican observaron que estaban presentes en diferentes grupos de virus, como los baculovirus, ascovirus y entomopoxvirus; y también en el genoma de algunos lepidópteros. Esto indicaba que hubo una transferencia de genes entre los virus y los insectos. Es decir, eran "transgénicos naturales". De esta forma, las orugas podrían resistir el ataque de las avispas parasitoides sin la necesidad de estar infectadas por los virus, lo que explicaría por qué algunas plagas adquieren resistencia a sus controladores biológicos.

Árbol filogenético de las secuencias de los PKF. Fuente: Gasmi et al. (2021).

Pero la historia no termina aquí. Resulta que hay avispas parasitoides como la Meteorus pulchricornis que, al poner sus huevecillos en las orugas, les transmiten un ascovirus que inactiva el efecto tóxico de las PKF. De esta manera, sus larvas pueden sobrevivir dentro de su hospedero que en teoría es resistente. Sin embargo, aún no está claro por qué algunos virus tienen los genes para las PKF y otros no. Tampoco se sabe si todas las PKF funcionan de la misma manera o si hay otros genes que juegan un papel protector similar.

Comentarios

Entradas más populares de este blog

La manifestación poco conocida de la tenia solitaria

En las profundidades del intestino delgado puede habitar un extraño huésped. Parece un fetuchini tan largo como una anaconda, pero dividido en decenas de pequeños segmentos llamados proglótides. Vive anclado a la pared intestinal por unos espeluznantes ganchos y ventosas que tiene en la cabeza (si así se le puede llamar a eso). No tiene boca porque se alimenta a través de la piel. Es la famosa tenia solitaria . Escólex de Taenia solium con cuatro ventosas y rostelo con ganchos. Fuente: CDC. Le llaman solitaria porque no necesita de una compañera (o compañero) para poder formar una familia. Son hermafroditas. Cada proglótido maduro tiene su propio suministro de óvulos y esperma, capaces de producir unos 60 000 huevos muy resistentes que son liberados a través de nuestras heces . Al menos seis segmentos llenos de huevos son liberados cada día por una persona infectada. Cuando los cerdos comen alimentos contaminados con heces humanas, común en algunas zonas de la sierra y selva del paí

¿Por qué tanto miedo al bromuro de etidio?

El bromuro de etidio (BrEt) es un agente químico muy usado en técnicas de biología molecular para teñir nuestros geles de agarosa y poder apreciar nuestras bandas de ADN; ya sean de los productos de extracción o de PCR. Existen dos formas de teñir los geles: i) remojando el gel de agarosa por 15 minutos en una bandeja con BrEt (0,5 mg/L) después de haber hecho la electroforesis o ii) añadiendo el BrEt directamente al gel al momento de prepararlo. Con la primera evitamos contaminar nuestra cámara de electroforesis con BrEt y con la segunda evitamos exponernos a salpicaduras y otros accidentes que pueden ocurrir al hacer la tinción en bandeja. Se han dado cuenta que desde que entramos a un laboratorio de biología molecular nos tienen traumados con el BrEt: "¡Cuidado que te salpique!", "¡no lo huelas!", "¡usa tres guantes!", "¡no es por ese lado!", "¡si te cae en la piel te va a dar cáncer y te puedes morir!", entre otras cosas más.

¿Qué fue del estudio más grande sobre la seguridad de los transgénicos?

La tarde del 11 de noviembre de 2014, en un hotel londinense, se anuncia el lanzamiento de " Factor GMO ", el experimento a largo plazo más extenso y detallado jamás realizado sobre un alimento transgénico y su plaguicida asociado. Con un costo estimado de 25 millones de dólares , el estudio buscaba aportar —con una solidez sin precedentes— valiosa información para permitir a las autoridades reguladoras, los gobiernos y la población general, responder si es seguro el consumo de Organismos Genéticamente Modificados (OGM) o la exposición a su herbicida asociado en condiciones reales. El experimento —que se llevaría a cabo en un laboratorio secreto en el territorio ruso para evitar cualquier injerencia externa— consistía en someter a 6.000 ratas de laboratorio a diversas dietas basadas en el maíz transgénico NK603 y su herbicida asociado (RoundUp), cuyo principio activo es el glifosato . Es similar al famoso  estudio realizado Guilles-Eric Seralini , pero a mayor esc