Ir al contenido principal

Buscando proteínas con potencial terapéutico

Nuestro ADN codifica al menos 20.000 proteínas, de las cuales unas 3.000 tienen la capacidad de unirse a distintos fármacos. Sin embargo, menos de 700 interactúan con aquellos que están aprobados por la FDA. Esto quiere decir que el 90% de las proteínas con potencial terapéutico aún son desconocidas o poco estudiadas.

Desde el año 2014 se pretende revertir esta situación gracias a una iniciativa de los Instituto Nacionales de la Salud de los Estados Unidos (NIH) denominada Consircio para Iluminar el Genoma ‘Drogable’ (IDG), el cual está conformado por instituciones norteamericanas y europeas.



La palabra ‘drogable’ viene del inglés druggable. No tiene una traducción directa al español pero básicamente hace referencia a la capacidad de una molécula —en este caso, una proteína— para interactuar con un determinado fármaco.

Entre el 2014 y 2016, el consorcio sistematizó en un portal llamado Pharos toda la información referente a las proteínas 'drogables', especialmente, de tres grandes familias: las quinasas, los canales iónicos y las GPCR (receptores acoplados a proteínas G), para que investigadores de todo el mundo puedan acceder a ellas y encuentren funciones interesantes que no han sido descritas hasta el momento.


En el 2017 se inció la segunda fase del programa que consiste en estudiar las propiedades de estas proteínas ‘drogables’ halladas en los tres años previos, a través de procesos experimentales y bioinformáticos. De esta manera se pretende encontrar nuevos fármacos y dilucidar otras funciones de las proteínas estudiadas desde un punto de vista fisiológico. Para ello se usarán animales de laboratorio y edición de genes mediante CRISPR.

Gracias al avance de la ciencia, hoy contamos con herramientas que nos permiten correr miles de ensayos a la vez. El análisis de la cuantiosa información generada lo hacen las computadoras. De esta manera, podemos explorar el potencial terapéutico de miles de moléculas y acelerar así el desarrollo de nuevos fármacos o hacerlos más efectivos.

Por otro lado, se podrá identificar genes y proteínas que son responsables de los efectos no deseados que tienen los fármacos o de las reacciones cruzadas que se pueden dar con el fin de ahorrar tiempo y dinero durante el desarrollo de los medicamentos.

Comentarios

Entradas más populares de este blog

¿Qué fue del estudio más grande sobre la seguridad de los transgénicos?

La tarde del 11 de noviembre de 2014, en un hotel londinense, se anuncia el lanzamiento de "Factor GMO", el experimento a largo plazo más extenso y detallado jamás realizado sobre un alimento transgénico y su plaguicida asociado.


Con un costo estimado de 25 millones de dólares, el estudio buscaba aportar —con una solidez sin precedentes— valiosa información para permitir a las autoridades reguladoras, los gobiernos y la población general, responder si es seguro el consumo de Organismos Genéticamente Modificados (OGM) o la exposición a su herbicida asociado en condiciones reales.

El experimento —que se llevaría a cabo en un laboratorio secreto en el territorio ruso para evitar cualquier injerencia externa— consistía en someter a 6.000 ratas de laboratorio a diversas dietas basadas en el maíz transgénico NK603 y su herbicida asociado (RoundUp), cuyo principio activo es el glifosato. Es similar al famoso estudio realizado Guilles-Eric Seralini, pero a mayor escala. Solo para re…

¿Por qué tanto miedo al bromuro de etidio?

El bromuro de etidio (BrEt) es un agente químico muy usado en técnicas de biología molecular para teñir nuestros geles de agarosa y poder apreciar nuestras bandas de ADN; ya sean de los productos de extracción o de PCR. Existen dos formas de teñir los geles: i) remojando el gel de agarosa por 15 minutos en una bandeja con BrEt (0,5 mg/L) después de haber hecho la electroforesis o ii) añadiendo el BrEt directamente al gel al momento de prepararlo. Con la primera evitamos contaminar nuestra cámara de electroforesis con BrEt y con la segunda evitamos exponernos a salpicaduras y otros accidentes que pueden ocurrir al hacer la tinción en bandeja.


Se han dado cuenta que desde que entramos a un laboratorio de biología molecular nos tienen traumados con el BrEt: "¡Cuidado que te salpique!", "¡no lo huelas!", "¡usa tres guantes!", "¡no es por ese lado!", "¡si te cae en la piel te va a dar cáncer y te puedes morir!", entre otras cosas más.

Si b…

TOP 10: Las peores cosas de trabajar en un laboratorio

Encontré este interesante artículo publicado en Science Careers. La verdad es que me ha gustado mucho —me sentí identificado con varios aspectos— tanto que me tomé la libertad de traducirlo y hacerle algunas modificaciones, en base a mi experiencia personal, para ustedes.Tus amigos no-científicos no entienden lo que haces.

Cuando te reúnes con tus amigos del colegio o del barrio y empiezan a hablar acerca de sus trabajos, qué es lo que hacen y cuáles han sido los logros más recientes, ellos fácilmente lo pueden resumir en un “he construido una casa/edificio/puente/carretera”, o “he dejado satisfecho a un cliente” (que feo sonó eso xD), o tu amigo abogado dirá “he sacado de la cárcel a un asaltante confeso y encima he logrado que lo indemnicen”, pero cuando te toca a ti ¿qué dirás? “Bueno he curado… uhm, la verdad no he curado, las ratas viven un poco más pero no las he curado, así que he descubierto… no, esa palabra es muy fuerte. La verdad he probado… este… tampoco, las pruebas están …