Ir al contenido principal

Buscando proteínas con potencial terapéutico

Nuestro ADN codifica al menos 20.000 proteínas, de las cuales unas 3.000 tienen la capacidad de unirse a distintos fármacos. Sin embargo, menos de 700 interactúan con aquellos que están aprobados por la FDA. Esto quiere decir que el 90% de las proteínas con potencial terapéutico aún son desconocidas o poco estudiadas.

Desde el año 2014 se pretende revertir esta situación gracias a una iniciativa de los Instituto Nacionales de la Salud de los Estados Unidos (NIH) denominada Consircio para Iluminar el Genoma ‘Drogable’ (IDG), el cual está conformado por instituciones norteamericanas y europeas.



La palabra ‘drogable’ viene del inglés druggable. No tiene una traducción directa al español pero básicamente hace referencia a la capacidad de una molécula —en este caso, una proteína— para interactuar con un determinado fármaco.

Entre el 2014 y 2016, el consorcio sistematizó en un portal llamado Pharos toda la información referente a las proteínas 'drogables', especialmente, de tres grandes familias: las quinasas, los canales iónicos y las GPCR (receptores acoplados a proteínas G), para que investigadores de todo el mundo puedan acceder a ellas y encuentren funciones interesantes que no han sido descritas hasta el momento.


En el 2017 se inció la segunda fase del programa que consiste en estudiar las propiedades de estas proteínas ‘drogables’ halladas en los tres años previos, a través de procesos experimentales y bioinformáticos. De esta manera se pretende encontrar nuevos fármacos y dilucidar otras funciones de las proteínas estudiadas desde un punto de vista fisiológico. Para ello se usarán animales de laboratorio y edición de genes mediante CRISPR.

Gracias al avance de la ciencia, hoy contamos con herramientas que nos permiten correr miles de ensayos a la vez. El análisis de la cuantiosa información generada lo hacen las computadoras. De esta manera, podemos explorar el potencial terapéutico de miles de moléculas y acelerar así el desarrollo de nuevos fármacos o hacerlos más efectivos.

Por otro lado, se podrá identificar genes y proteínas que son responsables de los efectos no deseados que tienen los fármacos o de las reacciones cruzadas que se pueden dar con el fin de ahorrar tiempo y dinero durante el desarrollo de los medicamentos.

Comentarios

Entradas más populares de este blog

La manifestación poco conocida de la tenia solitaria

En las profundidades del intestino delgado puede habitar un extraño huésped. Parece un fetuchini tan largo como una anaconda, pero dividido en decenas de pequeños segmentos llamados proglótides. Vive anclado a la pared intestinal por unos espeluznantes ganchos y ventosas que tiene en la cabeza (si así se le puede llamar a eso). No tiene boca porque se alimenta a través de la piel. Es la famosa tenia solitaria . Escólex de Taenia solium con cuatro ventosas y rostelo con ganchos. Fuente: CDC. Le llaman solitaria porque no necesita de una compañera (o compañero) para poder formar una familia. Son hermafroditas. Cada proglótido maduro tiene su propio suministro de óvulos y esperma, capaces de producir unos 60 000 huevos muy resistentes que son liberados a través de nuestras heces . Al menos seis segmentos llenos de huevos son liberados cada día por una persona infectada. Cuando los cerdos comen alimentos contaminados con heces humanas, común en algunas zonas de la sierra y selva del paí

¿Por qué tanto miedo al bromuro de etidio?

El bromuro de etidio (BrEt) es un agente químico muy usado en técnicas de biología molecular para teñir nuestros geles de agarosa y poder apreciar nuestras bandas de ADN; ya sean de los productos de extracción o de PCR. Existen dos formas de teñir los geles: i) remojando el gel de agarosa por 15 minutos en una bandeja con BrEt (0,5 mg/L) después de haber hecho la electroforesis o ii) añadiendo el BrEt directamente al gel al momento de prepararlo. Con la primera evitamos contaminar nuestra cámara de electroforesis con BrEt y con la segunda evitamos exponernos a salpicaduras y otros accidentes que pueden ocurrir al hacer la tinción en bandeja. Se han dado cuenta que desde que entramos a un laboratorio de biología molecular nos tienen traumados con el BrEt: "¡Cuidado que te salpique!", "¡no lo huelas!", "¡usa tres guantes!", "¡no es por ese lado!", "¡si te cae en la piel te va a dar cáncer y te puedes morir!", entre otras cosas más.

La citometría de masas, una novedosa técnica para estudiar las células individualmente

Los citómetros de flujo han sido una herramienta fundamental en el descubrimiento y caracterización de los diferentes tipos de células que conforman el sistema inmune. Esta técnica es tan poderosa que permite analizar más 10 parámetros simultáneamente, gracias al uso de anticuerpos marcados con moléculas fluorescentes. Sin embargo, la citometría de flujo parece haber llegado a su límite tecnológico, ya que cuando se pretende analizar más de 10 parámetros a la vez, la superposición de los espectros luminosos dificulta el análisis de los datos. Un grupo de investigadores norteamericanos y canadienses han mejorado la técnica gracias al uso de los principios de la espectrometría de masas según reportaron ayer en Science . De manera sencilla, la citometría de flujo consiste en el paso de una suspensión celular a través de un láser. Para que las células puedan ser detectadas y diferenciadas unas de otras, son marcadas con moléculas fluorescentes que se excitan cuando el rayo láser inci