Ir al contenido principal

Buscando proteínas con potencial terapéutico

Nuestro ADN codifica al menos 20.000 proteínas, de las cuales unas 3.000 tienen la capacidad de unirse a distintos fármacos. Sin embargo, menos de 700 interactúan con aquellos que están aprobados por la FDA. Esto quiere decir que el 90% de las proteínas con potencial terapéutico aún son desconocidas o poco estudiadas.

Desde el año 2014 se pretende revertir esta situación gracias a una iniciativa de los Instituto Nacionales de la Salud de los Estados Unidos (NIH) denominada Consircio para Iluminar el Genoma ‘Drogable’ (IDG), el cual está conformado por instituciones norteamericanas y europeas.



La palabra ‘drogable’ viene del inglés druggable. No tiene una traducción directa al español pero básicamente hace referencia a la capacidad de una molécula —en este caso, una proteína— para interactuar con un determinado fármaco.

Entre el 2014 y 2016, el consorcio sistematizó en un portal llamado Pharos toda la información referente a las proteínas 'drogables', especialmente, de tres grandes familias: las quinasas, los canales iónicos y las GPCR (receptores acoplados a proteínas G), para que investigadores de todo el mundo puedan acceder a ellas y encuentren funciones interesantes que no han sido descritas hasta el momento.


En el 2017 se inció la segunda fase del programa que consiste en estudiar las propiedades de estas proteínas ‘drogables’ halladas en los tres años previos, a través de procesos experimentales y bioinformáticos. De esta manera se pretende encontrar nuevos fármacos y dilucidar otras funciones de las proteínas estudiadas desde un punto de vista fisiológico. Para ello se usarán animales de laboratorio y edición de genes mediante CRISPR.

Gracias al avance de la ciencia, hoy contamos con herramientas que nos permiten correr miles de ensayos a la vez. El análisis de la cuantiosa información generada lo hacen las computadoras. De esta manera, podemos explorar el potencial terapéutico de miles de moléculas y acelerar así el desarrollo de nuevos fármacos o hacerlos más efectivos.

Por otro lado, se podrá identificar genes y proteínas que son responsables de los efectos no deseados que tienen los fármacos o de las reacciones cruzadas que se pueden dar con el fin de ahorrar tiempo y dinero durante el desarrollo de los medicamentos.

Comentarios

Entradas más populares de este blog

La oruga derretida

Las larvas de la polilla gitana ( Lymantria dispar ) llevan una vida tranquila. Durante el día, descansan en las grietas de la corteza de los árboles o enterradas en el suelo para evitar ser capturadas por sus depredadores. En las noches, salen de sus escondites y se alimentan de hojas hasta minutos antes del amanecer. A los cuarenta días de vida, se convierten en pupas, y dos semanas después, emergen como polillas adultas. Se aparean, ponen cientos de huevecillos y reinician su ciclo biológico. Oruga de la polilla gitana. Fuente: Wikimedia Commons . Una mañana, una de estas orugas aparece colgada boca abajo en la hoja más alta de una planta. Parece muerta. De pronto, empieza a estirarse y derretirse como si fuera un pedazo de plástico puesto cerca del fuego. La oruga literalmente gotea sobre las hojas que se encuentran debajo. Es una escena es macabra. Ninguna oruga presenció este hecho. Era de día y estaban escondidas. Pero en la noche, sin darse cuenta, se alimentan de las hojas s

¿Por qué tanto miedo al bromuro de etidio?

El bromuro de etidio (BrEt) es un agente químico muy usado en técnicas de biología molecular para teñir nuestros geles de agarosa y poder apreciar nuestras bandas de ADN; ya sean de los productos de extracción o de PCR. Existen dos formas de teñir los geles: i) remojando el gel de agarosa por 15 minutos en una bandeja con BrEt (0,5 mg/L) después de haber hecho la electroforesis o ii) añadiendo el BrEt directamente al gel al momento de prepararlo. Con la primera evitamos contaminar nuestra cámara de electroforesis con BrEt y con la segunda evitamos exponernos a salpicaduras y otros accidentes que pueden ocurrir al hacer la tinción en bandeja. Se han dado cuenta que desde que entramos a un laboratorio de biología molecular nos tienen traumados con el BrEt: "¡Cuidado que te salpique!", "¡no lo huelas!", "¡usa tres guantes!", "¡no es por ese lado!", "¡si te cae en la piel te va a dar cáncer y te puedes morir!", entre otras cosas más.

¿Cómo eran los primeros tomates que llegaron a Europa?

Las primeras exploraciones europeas al continente americano, allá por inicios del siglo XVI, trajeron consigo muchas riquezas, especialmente, plantas que eran cultivas y consumidas al otro lado del mundo. Una de ellas fue el tomate. Hoy es la hortaliza más cultivada en el mundo. Anualmente se producen unas 180 millones de toneladas en 4.85 millones de hectáreas. Los tomates de hoy no se parecen ni saben como los que llegaron a Europa hace 500 años. Esto se debe a que la selección y mejora genética, que se ha dado por décadas, se orientó hacia la obtención de frutos más redondos, uniformes y resistentes, que duren más en los anaqueles de los supermercados y resistan el aplastamiento. La consecuencia fue que, en el proceso, se perdieron aquellos genes y alelos que codifican mayores niveles de azúcares y compuestos volátiles , que son claves en el sabor de este fruto. Con el fin de saber la apariencia que tenían los primeros tomates que llegaron a Europa, un grupo de investigadores neerla