Ir al contenido principal

Un genoma picante

Ayer se publicó un artículo en Nature Genetics que podría resultar interesante para los que amamos las comidas picantes. 

Un grupo internacional de investigadores, principalmente surcoreanos, acaban de hacer público la secuencia del genoma del chile picante (Capsicum annuum). Esta especie se originó y domesticó en Mesoamérica y actualmente se cultiva en casi todo el mundo. Es pariente cercano del C. baccatum (ají amarillo y mirasol) y el C. pubescens (rocoto), los cuales son originarios del Perú, y forman parte de la familia de las Solanáceas, junto a la papa y el tomate. 

Los chiles o ajíes se caracterizan por la gran variedad de colores que presentan, los cuales van desde el amarillo pálido, pasando por el anaranjado y terminando en el rojo intenso y morado. Esto se debe principalmente a la acción de dos carotenoides: la capsantina y la capsorrubina, que son aprovechados como pigmentos naturales dentro de la industria alimentaria y cosmética. Por otro lado, cuentan con un grupo de alcaloides con propiedades antifúngicas, antibacterianas y anticancerígenas llamadas capsaicinoides, que se producen en la parte vascular del fruto (la placenta o comúnmente conocida como "las venas" del ají) y que también son responsables de la sensación picante que dejan en la boca. Se han aislado al menos 22 de estos compuestos, siendo la capsaicina la más importante de todas.

Capsicum annuum. Fuente: WikipediaCapsicum annuum. Fuente: Wikipedia.

Los investigadores secuenciaron el genoma de dos variedades cultivadas de C. annuum (chile criollo de Morelo CM334) y de un pariente silvestre llamado C. chinensis. ¿Por qué escogieron la variedad CM334? Pues porque presenta un gran resistencia a distintos patógenos y enfermedades, especialmente la causada por Phytophthora capsici, y actualmente es usado en diferentes programas de mejoramiento del cultivo.

C. annuum es diploide. Esto quiere decir que presenta dos copias de cada uno de sus 12 cromosomas (n=12). El tamaño de su genoma 3,400 millones de pares de base (3,4 Gpb) es similar al nuestro (3,2 Gpb), pero mucho más grande que de la papa (0,84 Gpb) y del tomate (0,9 Gpb). Por otro lado, el 75% del genoma de C. annuum corresponde a secuencias repetidas (retrotransposones) que fueron incorporadas después su divergencia con el tomate hace unos 19 millones de años.

Se estima que C. annuum posee al menos 34.900 genes, un número similar al que poseen el tomate y la papa. Comparte muchos genes de maduración con el tomate, pero existe una gran diferencia entre sus frutos: los tomates son climatéricos, esto quiere decir que su maduración está regulada por una molécula muy simple llamada etileno, mientras que los chiles no son climatéricos.

La ventaja de los frutos climatéricos es que pueden ser cosechados aún verdes ya que seguirán madurando fuera de la planta, incluso podemos acelerar y hacer más homogéneo este proceso aplicando el gas etileno directamente. Esto facilita su transporte y almacenamiento. Un análisis comparativo entre los genes que se expresan durante la maduración de estos dos cultivos reveló que los chiles expresan en bajos niveles los genes responsables de la producción de etileno, especialmente el gen CNR. Asimismo, el gen de la poligalacturonasa (responsable del ablandamiento del tomate) se encuentra subexpresado e incompleto. Todo esto suma a que sus frutos sean tan diferentes. Por otro lado, los niveles de expresión de los genes responsables de la producción de Vitamina C son mayores en el chile que en el tomate.

La publicación del genoma del C. annuum sevirá como una plataforma para mejorar las características nutricionales y aprovechar del valor farmacológico de este importante cultivo que solo en el año 2011 movió más de 14.400 millones de dólares. Asimismo, contaremos con un genoma de referencia para el estudio y mejoramiento de nuestras especies nativas de ajíes aprovechando de la gran diversidad genética que tenemos.



Referencia: ResearchBlogging.orgSeungill Kim, et al (2014). Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species Nature Genetics DOI: 10.1038/ng.2877

Comentarios

Entradas más populares de este blog

La oruga derretida

Las larvas de la polilla gitana ( Lymantria dispar ) llevan una vida tranquila. Durante el día, descansan en las grietas de la corteza de los árboles o enterradas en el suelo para evitar ser capturadas por sus depredadores. En las noches, salen de sus escondites y se alimentan de hojas hasta minutos antes del amanecer. A los cuarenta días de vida, se convierten en pupas, y dos semanas después, emergen como polillas adultas. Se aparean, ponen cientos de huevecillos y reinician su ciclo biológico. Oruga de la polilla gitana. Fuente: Wikimedia Commons . Una mañana, una de estas orugas aparece colgada boca abajo en la hoja más alta de una planta. Parece muerta. De pronto, empieza a estirarse y derretirse como si fuera un pedazo de plástico puesto cerca del fuego. La oruga literalmente gotea sobre las hojas que se encuentran debajo. Es una escena es macabra. Ninguna oruga presenció este hecho. Era de día y estaban escondidas. Pero en la noche, sin darse cuenta, se alimentan de las hojas s

¿Por qué tanto miedo al bromuro de etidio?

El bromuro de etidio (BrEt) es un agente químico muy usado en técnicas de biología molecular para teñir nuestros geles de agarosa y poder apreciar nuestras bandas de ADN; ya sean de los productos de extracción o de PCR. Existen dos formas de teñir los geles: i) remojando el gel de agarosa por 15 minutos en una bandeja con BrEt (0,5 mg/L) después de haber hecho la electroforesis o ii) añadiendo el BrEt directamente al gel al momento de prepararlo. Con la primera evitamos contaminar nuestra cámara de electroforesis con BrEt y con la segunda evitamos exponernos a salpicaduras y otros accidentes que pueden ocurrir al hacer la tinción en bandeja. Se han dado cuenta que desde que entramos a un laboratorio de biología molecular nos tienen traumados con el BrEt: "¡Cuidado que te salpique!", "¡no lo huelas!", "¡usa tres guantes!", "¡no es por ese lado!", "¡si te cae en la piel te va a dar cáncer y te puedes morir!", entre otras cosas más.

¿Cómo eran los primeros tomates que llegaron a Europa?

Las primeras exploraciones europeas al continente americano, allá por inicios del siglo XVI, trajeron consigo muchas riquezas, especialmente, plantas que eran cultivas y consumidas al otro lado del mundo. Una de ellas fue el tomate. Hoy es la hortaliza más cultivada en el mundo. Anualmente se producen unas 180 millones de toneladas en 4.85 millones de hectáreas. Los tomates de hoy no se parecen ni saben como los que llegaron a Europa hace 500 años. Esto se debe a que la selección y mejora genética, que se ha dado por décadas, se orientó hacia la obtención de frutos más redondos, uniformes y resistentes, que duren más en los anaqueles de los supermercados y resistan el aplastamiento. La consecuencia fue que, en el proceso, se perdieron aquellos genes y alelos que codifican mayores niveles de azúcares y compuestos volátiles , que son claves en el sabor de este fruto. Con el fin de saber la apariencia que tenían los primeros tomates que llegaron a Europa, un grupo de investigadores neerla