Ir al contenido principal

Un BLAST para enzimas

Las enzimas son las moléculas responsables de catalizar las reacciones químicas que se llevan a cabo en todos los seres vivos. Están formadas por largas cadenas de aminoácidos, en secuencias específicas determinadas por los genes, que adquieren estructuras tridimensionales complejas. Gracias a ellas podemos digerir los alimentos, desintoxicar las células, degradar los medicamentos y sintetizar nuevas proteínas, ADN, neurotransmisores y hormonas. En fin, debemos nuestro funcionamiento a ellas.

Para la primera mitad del siglo XX ya se habían identificado y caracterizado cientos de enzimas en distintos laboratorios del mundo, por lo que era necesario desarrollar algún mecanismo para agruparlas de acuerdo a sus propiedades químicas. Fue así que en la década de 1960, la Comisión Conjunta sobre Nomenclatura Bioquímica (JCBN) adoptó un sistema universal de clasificación enzimática que consistía de cuatro números: El primero corresponde a su función catalítica o mecanismo de acción (clase), el segundo al tipo de enlace que modifica (subclase), el tercero a la naturaleza del sustrato (sub-subclase) y el cuarto número indica específicamente el sustrato o es el número correlativo establecido por la JCBN. Por ejemplo, la tripsina (EC 3.4.21.4), es una hidrolasa (clase 3) que rompe con agua un enlace peptídico (subclase 4) usando para ello un residuo de serina en su centro activo (sub-subclase 21) y es la cuarta agregada a la lista de enzimas degradadoras de proteínas (4).

Ahora, gracias al desarrollo de analizadores químicos sofisticados y equipos de secuenciamiento de última generación, descubrimos nuevas enzimas con potenciales usos farmacéuticos, bioquímicos e industriales. Y no sólo eso, también la computación y la informática están poniendo de su parte a través del desarrollo de algoritmos y programas que permiten predecir, modelar y modificar las estructuras de las enzimas para obtener nuevas funciones. Por ello se requiere de un mecanismo rápido para comparar la función de las enzimas que se descubren y caracterizan día a día.

Es así que un grupo de investigadores del Laboratorio Europeo de Biología Molecular (EMBL) han desarrollado una herramienta bioinformática llamada EC-BLAST que permite mapear y comparar cualquier reacción enzimática en función al cambio de los enlaces químicos de los sustratos, el centro activo (lugar de la enzima donde se lleva a cabo la reacción) y la estructura de las moléculas participantes de la reacción enzimática. Gracias a unos algoritmos informáticos, cada uno de estos parámetros genera una "huella dactilar" que es comparada con las que están almacenadas en la base de datos del EMBL, para poder determinar la función de la enzima o su clasificación dentro del sistema universal.

EC-BLAST
Modo de funcionamiento del EC-BLAST

 

Para ver si el EC-BLAST funcionaba adecuadamente, los investigadores lo probaron utilizando las 6000 reacciones enzimáticas juntó a sus respectivos sustratos registrados en la base de datos de la Enciclopedia de Genes y Genomas de Kioto (KEGG). Los resultados fueron muy buenos. Las enzimas se agruparon de acuerdo a las clases y subclases a las que corresponden según su nomenclatura. Además permitió identificar algunos errores en la clasificación de ciertas enzimas, incluso se observó que algunas de ellas podían cumplir más de una función específica y podían pertenecer a diferentes clases (promiscuidad enzimática).

Resumiendo, el EC-BLAST ha demostrado ser una potente herramienta para comparar la similaridad química de las reacciones enzimáticas. Además es útil a la hora de asignar una clasificación a las enzimas recién descubiertas y podría ayudar a identificar nuevas funciones en las enzimas ya conocidas, que podría ser aprovechada por la industria biotecnológica.


Referencia:

ResearchBlogging.orgAsad, S, Martinez, S, Furnham, N, Holliday, GL, & Thornton, JM (2014). EC-BLAST: a tool to automatically search and compare enzyme reactions Nature Methods DOI: 10.1038/nmeth.2803

Comentarios

Entradas más populares de este blog

Pruebas rápidas y moleculares para COVID-19

Desde que se anunció la adquisición de más de un millón de "pruebas rápidas" para detectar personas con COVID-19, a fines de marzo, estuvieron en el ojo de la tormenta. Diversos científicos se manifestaron a favor o en contra de ellas, tanto en televisión como en redes sociales. El público general también tomó posición, más basada en simpatías políticas que en ciencia. Aquí les hago un resumen para entender de qué va todo esto.
Definamos conceptos "Pruebas moleculares" es un nombre genérico empleado para referirnos a los análisis basados en ácidos nucleicos, que puede ser de ADN o ARN. Por ejemplo, una prueba de paternidad es una prueba molecular. Se analiza el ADN del presunto padre y del hijo(a), para ver si comparten los mismos marcadores genéticos (fragmentos de ADN que son heredados). En el caso del coronavirus (SARS-CoV-2), la prueba molecular detecta marcadores genéticos en su ARN (otra molécula que también puede codificar la información genética).

La prueb…

¿Qué fue del estudio más grande sobre la seguridad de los transgénicos?

La tarde del 11 de noviembre de 2014, en un hotel londinense, se anuncia el lanzamiento de "Factor GMO", el experimento a largo plazo más extenso y detallado jamás realizado sobre un alimento transgénico y su plaguicida asociado.


Con un costo estimado de 25 millones de dólares, el estudio buscaba aportar —con una solidez sin precedentes— valiosa información para permitir a las autoridades reguladoras, los gobiernos y la población general, responder si es seguro el consumo de Organismos Genéticamente Modificados (OGM) o la exposición a su herbicida asociado en condiciones reales.

El experimento —que se llevaría a cabo en un laboratorio secreto en el territorio ruso para evitar cualquier injerencia externa— consistía en someter a 6.000 ratas de laboratorio a diversas dietas basadas en el maíz transgénico NK603 y su herbicida asociado (RoundUp), cuyo principio activo es el glifosato. Es similar al famoso estudio realizado Guilles-Eric Seralini, pero a mayor escala. Solo para re…

Cuando los antioxidantes promueven el cáncer

Hemos comentado muchas veces que las Especies Reactivas del Oxígeno (ROS, por sus siglas en inglés) están involucrados con el envejecimiento y con el desarrollo del cáncer. Esto se debe a que los ROS son altamente reactivos, por lo tanto, son capaces de dañar el ADN generando mutaciones. Por suerte existen los antioxidantes, quienes son los encargados de atrapar los ROS y mantenerlos en niveles que no generen daño alguno. Sin embargo, un grupo internacional de investigadores liderados por la Dra. Gina DeNicola del Instituto de Investigaciones de Cambridge revelaron que el factor de transcripción encargado de activar los genes que nos protegen de los ROS, también puede favorecer el desarrollo de ciertos tumores según un artículo publicado ayer en Nature.Normalmente, cuando las células son sometidas a un estrés fisiológico o sufren de algún tipo de daño genético, se activan una serie de genes y factores de transcripción que, de manera coordinada, regulan el funcionamiento de la célula, …