Ir al contenido principal

Las rosas y la ingeniería de colores de las flores

La floricultura, una de las ramas de la horticultura, se define como la ciencia que se dedica al cultivo familiar o industrial de flores y plantas ornamentales. El ser humano a través de su historia ha creado y desarrollado múltiples procesos para la producción masiva de flores y plantas ornamentales. Desde tiempos inmemoriales hasta la actualidad la investigación científica ha evolucionado significativamente. Pero no fue hasta después del Renacimiento que la teoría y práctica de esta ciencia evolucionó notablemente. La teoría mendeliana fue redescubierta y aplicada a inicios del siglo XX, lo que incremento exponencialmente la reproducción de estos productos.

Desde entonces, la ingeniería genética ha sido utilizada para controlar diferentes detalles de forma y color en el cultivo de flores y plantas ornamentales. La coloración de una flor está determinada por tres clases de pigmentos: flavonoides, carotenoides y betalaínas. Los flavonoides, que son los pigmentos más comunes, producen gamas de colores que van desde el rojo y morado hasta el amarillo y anaranjado.
 
Las antocianinas son las formas más comunes de pigmentos flavonoides. Se puede aplicar la ingeniería genética para modificar la biosíntesis de flavonoides y así obtener variedades de flores con colores casi imposibles de conseguir a través del mejoramiento genético convencional (selección artificial e hibridación). Un ejemplo es la producción de las rosas azules. Estas no existen en la naturaleza, a pesar de los grandes esfuerzos de mejoramiento mediante la reproducción selectiva.
 
Una compañía japonesa abordó esta problemática a través de los cambios genéticos en una antocianina llamada delfinidina. A pesar que el resultado ha sido criticado por muchos, sigue siendo un gran paso en la creación de flores de gran demanda como es el caso de la rosa azul.
 
El estudio de color de la flor en sus aspectos genéticos y fenotípicos continuará con futuras pruebas de campo. Hasta entonces, apreciar el resultado visual en diferentes tipos de eventos sociales aumenta el interés científico y ornamental.
 

Este artículo nos lo envía Jesús Garay, escritor independiente con interés en la investigación de la biotecnología y el uso de herramientas como los colorímetros para medir con precisión los rasgos físicos.

Comentarios

  1. Anónimo4/5/13 22:41

    Muy interesante, es verdad que no somos Dios para cambiar la genética, pero no hay que negar que es hermoso ver una rosa de un color distinto al que estamos acostumbrados.

    ResponderBorrar
  2. Anónimo7/5/13 19:12

    La imagen de la fotografía se puede apreciar que está alterada con algún programa de edición (photoshop), aunque eso no desmiente el artículo.

    ResponderBorrar

Publicar un comentario

Se respetuoso con tus comentarios y críticas. Cualquier comentario ofensivo será eliminado.

Entradas más populares de este blog

¿Por qué tanto miedo al bromuro de etidio?

El bromuro de etidio (BrEt) es un agente químico muy usado en técnicas de biología molecular para teñir nuestros geles de agarosa y poder apreciar nuestras bandas de ADN; ya sean de los productos de extracción o de PCR. Existen dos formas de teñir los geles: i) remojando el gel de agarosa por 15 minutos en una bandeja con BrEt (0,5 mg/L) después de haber hecho la electroforesis o ii) añadiendo el BrEt directamente al gel al momento de prepararlo. Con la primera evitamos contaminar nuestra cámara de electroforesis con BrEt y con la segunda evitamos exponernos a salpicaduras y otros accidentes que pueden ocurrir al hacer la tinción en bandeja. Se han dado cuenta que desde que entramos a un laboratorio de biología molecular nos tienen traumados con el BrEt: "¡Cuidado que te salpique!", "¡no lo huelas!", "¡usa tres guantes!", "¡no es por ese lado!", "¡si te cae en la piel te va a dar cáncer y te puedes morir!", entre otras cosas más.

TOP 10: Las peores cosas de trabajar en un laboratorio

Encontré este interesante artículo publicado en Science Careers . La verdad es que me ha gustado mucho —me sentí identificado con varios aspectos— tanto que me tomé la libertad de traducirlo y hacerle algunas modificaciones, en base a mi experiencia personal, para ustedes. Tus amigos no-científicos no entienden lo que haces. Cuando te reúnes con tus amigos del colegio o del barrio y empiezan a hablar acerca de sus trabajos, qué es lo que hacen y cuáles han sido los logros más recientes, ellos fácilmente lo pueden resumir en un “ he construido una casa/edificio/puente/carretera ”, o “ he dejado satisfecho a un cliente ” (que feo sonó eso xD), o tu amigo abogado dirá “ he sacado de la cárcel a un asaltante confeso y encima he logrado que lo indemnicen ”, pero cuando te toca a ti ¿qué dirás? “ Bueno he curado… uhm, la verdad no he curado, las ratas viven un poco más pero no las he curado, así que he descubierto… no, esa palabra es muy fuerte. La verdad he probado… este… tampoco, las

El mundo subatómico de la biología: Biología cuántica

Los seres vivos no somos más que un conjunto de átomos maravillosamente organizados, así que estamos gobernados por sus leyes y principios. Sin embargo, el mundo subatómico no se parece en nada al que los biólogos están acostumbrados estudiar. En el presente artículo trataré de ver en qué medida puede afectar el comportamiento de las partículas subatómicas al mundo vivo que conocemos, sin adentrarnos en conceptos ni ecuaciones complicadas (no soy físico y sería muy difícil para mí explicarlos), tratando de que al menos les quede una idea —algo reduccionista—  de cómo ciertos aspectos complejos de la vida pueden llegar a ser netamente físicos. Los orígenes Hace un poco más de 80 años, el físico alemán Werner Heisenberg propuso los conceptos centrales de la física cuántica que buscaba explicar ese misterioso mundo de los átomos, donde los fotones y los electrones se comportan de una manera realmente extraña, a veces lo hacen como onda y otras como partícula, fenómenos que no pueden s