Ir al contenido principal

Neuronas obtenidas de la orina

Parece un encabezado sensacionalista pero no lo es. Resulta que científicos chinos del Instituto del Sur de China para la Biología de las Células Madre y la Medicina Regenerativa han logrado generar progenitores de células neuronales humanas a partir de las células epiteliales que se desprenden cuando orinamos.

celulas_orina

Estudios previos demostraron que las células humanas ya diferenciadas y especializadas pueden transformarse en otras distintas simplemente dándoles un coctel de factores de transcripción —proteínas que encienden o apagan genes— que permiten reprogramarlas.

En el blog ya vimos algunos ejemplos. En el 2011, un equipo de investigadores de la Escuela de Medicina de la Universidad de Stanford (EEUU) lograron transformar células de la piel en neuronas, mientras que otro equipo de la Universidad de Kyushu (Japón) convirtieron células del fibroblasto en células hepáticas.

En estos estudios, los genes que codifican los factores de transcripción necesarios para reprogramar las células se insertaron a través de un virus (vectores) que, por su propia naturaleza, integra su material genético en el genoma de la célula infectada. Sin embargo, la integración puede ocurrir en una región crítica del genoma provocando problemas en el proceso de desarrollo.

Para evitar los problemas asociados a los vectores virales, los investigadores chinos liderados por el Dr. Duanqing Pei usaron episomas. Los episomas son pequeñas porciones de ADN libre con la capacidad de replicarse y transcribirse de manera autónoma y que no llegan a integrarse en el genoma del hospedero. Un ejemplo típico de un episoma son los plásmidos.

Entonces, los episomas portando todos los factores de transcripción necesarios para la reprogramación celular (OCT4 (POU5F1), SOX2, SV40LT, KLF4 y los microARN MIR302–367) fueron introducidos en las células epiteliales obtenidas de la orina de un hombre de 37 años mediante la electroporación (una técnica que usa pulsos eléctricos para permeabilizar las membranas celulares y permitir el ingreso de moléculas de ADN externo). Un par de semanas después, el 0.2% de las células epiteliales se transformaron en progenitores de células cerebrales.

Cuando Pei y su equipo pusieron a las células reprogramadas en medios usados para cultivar neuronas, éstas expresaron marcadores específicos de células mucho más especializadas como las neuronas glutamatérgicas, GABAérgicas y dopaminérgicas y los astrocitos. Incluso mostraron potenciales de acción lo que indicaba que eran completamente funcionales.

Finalmente, para demostrar su potencial uso en el tratamiento de enfermedades neurodegenerativas, los investigadores trasplantaron las células reprogramadas en ratones recién nacidos. Cuatro semanas después del trasplante, se observó que las células se integraron bien al sistema nervioso del animal y no desarrollaron tumores.

Sin dudas, el estudio es un gran avance hacia el uso de la reprogramación celular en el tratamiento de enfermedades asociadas al sistema nervioso. Las ventajas que presenta con respecto a otras técnicas es que los genes de los factores usados para la reprogramación celular no se integran al genoma de las células tratadas, reduciendo el riesgo de que ocurran problemas en el desarrollo. Además, el tiempo que tomó en transformar una célula epitelial en neuronal fue mucho más rápido comparado con el uso de células madre pluripotente inducidas (iPSC). Y al usarse células del mismo paciente al cual se le hará el tratamiento, las probabilidades de rechazo del tejido o reacciones alérgicas son menores.


Referencia:

ResearchBlogging.orgWang, L., Wang, L., Huang, W., Su, H., Xue, Y., Su, Z., Liao, B., Wang, H., Bao, X., Qin, D., He, J., Wu, W., So, K., Pan, G., & Pei, D. (2012). Generation of integration-free neural progenitor cells from cells in human urine Nature Methods DOI: 10.1038/Nmeth.2283

Comentarios

Entradas más populares de este blog

La oruga derretida

Las larvas de la polilla gitana ( Lymantria dispar ) llevan una vida tranquila. Durante el día, descansan en las grietas de la corteza de los árboles o enterradas en el suelo para evitar ser capturadas por sus depredadores. En las noches, salen de sus escondites y se alimentan de hojas hasta minutos antes del amanecer. A los cuarenta días de vida, se convierten en pupas, y dos semanas después, emergen como polillas adultas. Se aparean, ponen cientos de huevecillos y reinician su ciclo biológico. Oruga de la polilla gitana. Fuente: Wikimedia Commons . Una mañana, una de estas orugas aparece colgada boca abajo en la hoja más alta de una planta. Parece muerta. De pronto, empieza a estirarse y derretirse como si fuera un pedazo de plástico puesto cerca del fuego. La oruga literalmente gotea sobre las hojas que se encuentran debajo. Es una escena es macabra. Ninguna oruga presenció este hecho. Era de día y estaban escondidas. Pero en la noche, sin darse cuenta, se alimentan de las hojas s

¿Por qué tanto miedo al bromuro de etidio?

El bromuro de etidio (BrEt) es un agente químico muy usado en técnicas de biología molecular para teñir nuestros geles de agarosa y poder apreciar nuestras bandas de ADN; ya sean de los productos de extracción o de PCR. Existen dos formas de teñir los geles: i) remojando el gel de agarosa por 15 minutos en una bandeja con BrEt (0,5 mg/L) después de haber hecho la electroforesis o ii) añadiendo el BrEt directamente al gel al momento de prepararlo. Con la primera evitamos contaminar nuestra cámara de electroforesis con BrEt y con la segunda evitamos exponernos a salpicaduras y otros accidentes que pueden ocurrir al hacer la tinción en bandeja. Se han dado cuenta que desde que entramos a un laboratorio de biología molecular nos tienen traumados con el BrEt: "¡Cuidado que te salpique!", "¡no lo huelas!", "¡usa tres guantes!", "¡no es por ese lado!", "¡si te cae en la piel te va a dar cáncer y te puedes morir!", entre otras cosas más.

¿Cómo eran los primeros tomates que llegaron a Europa?

Las primeras exploraciones europeas al continente americano, allá por inicios del siglo XVI, trajeron consigo muchas riquezas, especialmente, plantas que eran cultivas y consumidas al otro lado del mundo. Una de ellas fue el tomate. Hoy es la hortaliza más cultivada en el mundo. Anualmente se producen unas 180 millones de toneladas en 4.85 millones de hectáreas. Los tomates de hoy no se parecen ni saben como los que llegaron a Europa hace 500 años. Esto se debe a que la selección y mejora genética, que se ha dado por décadas, se orientó hacia la obtención de frutos más redondos, uniformes y resistentes, que duren más en los anaqueles de los supermercados y resistan el aplastamiento. La consecuencia fue que, en el proceso, se perdieron aquellos genes y alelos que codifican mayores niveles de azúcares y compuestos volátiles , que son claves en el sabor de este fruto. Con el fin de saber la apariencia que tenían los primeros tomates que llegaron a Europa, un grupo de investigadores neerla