Ir al contenido principal

Transferencia de núcleo para prevenir enfermedades mitocondriales

Científicos desarrollan embriones donde las mitocondrias no pertenecen a la madre.

Una de cada 5000 personas en el mundo nace con alguna enfermedad asociada a las mitocondrias: las “plantas generadoras de energía” a las células. Estas pequeñas estructuras cuentan con su propio material genético —el ADN mitocondrial— que si sufre alguna mutación puede generar una gran variedad de síntomas y enfermedades, algunas fatales, que afectan principalmente a los tejidos con mayores demandas energéticas, por ejemplo: el cerebro, el corazón y los músculos.

Todos los seres humanos heredamos las mitocondrias de nuestra madre ya que éstas se hallan presentes en los óvulos y no en los espermatozoides. Si una mujer sufre una mutación perjudicial en su ADN mitocondrial, es seguro que sus hijos lo heredarán. Para evitar este problema se deben remover todas las mitocondrias dañadas del óvulo de la mujer afectada y reemplazarlas por unas sanas. Esto no es una tarea fácil considerando que en un óvulo maduro puede haber miles de mitocondrias.

En el 2009, un grupo de investigadores liderados por el biólogo reproductivo Shoukhrat Mitalipov transfirieron el núcleo de un óvulo de macaco a otro óvulo al cual previamente le habían retirado su propio núcleo y lo fecundaron en el laboratorio. El huevo fertilizado luego fue implantado en el útero del primer macaco y al cabo de un tiempo parió tres crías sanas, con la diferencia que todos ellos poseían el ADN mitocondrial de la donante y no de la madre.

Según un estudio publicado esta semana en Nature, el equipo del Dr. Mitalipov repitió el experimento con óvulos humanos logrando reemplazar las mitocondrias defectuosas de la madre a través de la transferencia de núcleo. La tercera parte de los óvulos sanos desarrollados mediante esta técnica logaron ser fertilizados llegando a formar blastocistos y células madre embrionarias. Sin embargo no llegaron a ser implantados en úteros porque las leyes no lo permiten.

Si bien la técnica parece funcionar, el porcentaje de fertilización exitosa aún es muy baja. Además, los bebés que nazcan bajo este procedimiento tendrán un material genético provenientes de tres personas diferentes: el ADN nuclear de la padre y de la madre y el ADN mitocondrial de la mujer donante. No hay dudas que esto generará un fuerte debate bioético que podría retrasar su aprobación.

Vía | Nature News & ScienceNOW.

Comentarios

Entradas más populares de este blog

La oruga derretida

Las larvas de la polilla gitana ( Lymantria dispar ) llevan una vida tranquila. Durante el día, descansan en las grietas de la corteza de los árboles o enterradas en el suelo para evitar ser capturadas por sus depredadores. En las noches, salen de sus escondites y se alimentan de hojas hasta minutos antes del amanecer. A los cuarenta días de vida, se convierten en pupas, y dos semanas después, emergen como polillas adultas. Se aparean, ponen cientos de huevecillos y reinician su ciclo biológico. Oruga de la polilla gitana. Fuente: Wikimedia Commons . Una mañana, una de estas orugas aparece colgada boca abajo en la hoja más alta de una planta. Parece muerta. De pronto, empieza a estirarse y derretirse como si fuera un pedazo de plástico puesto cerca del fuego. La oruga literalmente gotea sobre las hojas que se encuentran debajo. Es una escena es macabra. Ninguna oruga presenció este hecho. Era de día y estaban escondidas. Pero en la noche, sin darse cuenta, se alimentan de las hojas s

¿Por qué tanto miedo al bromuro de etidio?

El bromuro de etidio (BrEt) es un agente químico muy usado en técnicas de biología molecular para teñir nuestros geles de agarosa y poder apreciar nuestras bandas de ADN; ya sean de los productos de extracción o de PCR. Existen dos formas de teñir los geles: i) remojando el gel de agarosa por 15 minutos en una bandeja con BrEt (0,5 mg/L) después de haber hecho la electroforesis o ii) añadiendo el BrEt directamente al gel al momento de prepararlo. Con la primera evitamos contaminar nuestra cámara de electroforesis con BrEt y con la segunda evitamos exponernos a salpicaduras y otros accidentes que pueden ocurrir al hacer la tinción en bandeja. Se han dado cuenta que desde que entramos a un laboratorio de biología molecular nos tienen traumados con el BrEt: "¡Cuidado que te salpique!", "¡no lo huelas!", "¡usa tres guantes!", "¡no es por ese lado!", "¡si te cae en la piel te va a dar cáncer y te puedes morir!", entre otras cosas más.

¿Cómo eran los primeros tomates que llegaron a Europa?

Las primeras exploraciones europeas al continente americano, allá por inicios del siglo XVI, trajeron consigo muchas riquezas, especialmente, plantas que eran cultivas y consumidas al otro lado del mundo. Una de ellas fue el tomate. Hoy es la hortaliza más cultivada en el mundo. Anualmente se producen unas 180 millones de toneladas en 4.85 millones de hectáreas. Los tomates de hoy no se parecen ni saben como los que llegaron a Europa hace 500 años. Esto se debe a que la selección y mejora genética, que se ha dado por décadas, se orientó hacia la obtención de frutos más redondos, uniformes y resistentes, que duren más en los anaqueles de los supermercados y resistan el aplastamiento. La consecuencia fue que, en el proceso, se perdieron aquellos genes y alelos que codifican mayores niveles de azúcares y compuestos volátiles , que son claves en el sabor de este fruto. Con el fin de saber la apariencia que tenían los primeros tomates que llegaron a Europa, un grupo de investigadores neerla