Ir al contenido principal

Reconstruyendo el metabolismo más primitivo

Usando herramientas bioinformáticas, investigadores estadounidenses han reconstruido una red metabólica representativa del último ancestro común de todos los seres vivos.

Si analizamos el árbol de la vida —un diagrama que pretende relacionar evolutivamente a todos los grupos de seres vivos de la Tierra— veremos que hay un punto inicial en el que todos convergen, un organismo que vendría a ser el ancestro de nuestros ancestros o simplemente el LUCA (Último Ancestro Común Universal, por sus siglas en inglés).

LICA2

La hipótesis de que todas las especies que conocemos en la actualidad tuvieron alguna vez un único ancestro común radica en las similaridades genéticas y fisiológicas que ellas comparten. Por ejemplo: la replicación del ADN, la síntesis de proteínas, la degradación de azúcares, el transporte de iones, o las secuencias de ciertos genes, son bastante similares incluso entre especies completamente diferentes como una jirafa y una bacteria.

Buscando al ancestro

En el 2003, un grupo de investigadores liderados por Kirk Harris de la Universidad de Colorado (EEUU) identificaron un pequeño grupo de genes conservados en los tres dominios de la vida (bacterias, arqueas y eucariotas) que podrían haber estado presentes —o por lo menos, genes relacionados a ellos— en el genoma de LUCA. Sin embargo, son las estructuras proteicas las características más conservadas de los seres vivos: si un aminoácido cambia, la proteína simplemente pierde su función.

Si analizamos las secuencias de aminoácidos que conforman una proteína veremos que hay porciones que pueden ser encontradas en otras proteínas incluso de organismos diferentes. A estas regiones se las conocen como dominios. Los dominios cumplen funciones claves dentro de una proteína: le dan forma, afinidad por otras moléculas, actividad catalítica para llevar a cabo reacciones químicas, etc. Considerando además que la aparición de un nuevo dominio es un hecho muy poco probable en comparación a la reutilización de uno ya existente, los biólogos los emplean para hacer estudios evolutivos más profundos.

En el 2007, los hermanos Caetano-Anollés y su equipo de la Universidad de Illinois (EEUU) hicieron un trabajo parecido al de Harris pero esta vez usando las secuencias de los dominios presentes en los tres reinos, logrando identificar las posibles estructuras proteicas presentes en LUCA.

Dos años más tarde, Vijayasarathy Srinivasan y Harold Morowitz de la Universidad George Mason (EEUU) estudiaron las reacciones bioquímicas —sin tomar en cuenta las enzimas que las catalizaban— de cuatro bacterias y una arquea, encontrando más de 250 comunes en todas ellas y sugiriendo que éstas también pudieron estar presentes en LUCA (siempre y cuando LUCA haya sido autótrofo).

Enzimas primitivas

Debido a que las secuencias genéticas, las estructuras proteicas y las rutas metabólicas no responden de la misma manera ante la presión selectiva y evolucionan a diferentes ritmos, cada uno revela diferentes aspectos de LUCA. Pero, ¿qué pasaría si sólo nos enfocamos en los puntos donde estos tres estudios coinciden? Pues tendríamos datos más certeros sobre el repertorio catalítico de LUCA. Esto fue precisamente lo que hicieron tres investigadores estadounidenses según un estudio publicado esta semana en PLOS ONE.

El equipo liderado por el biólogo computacional Ram Samudrala de la Universidad de Washington identificó un total de diez funciones enzimáticas —seis presentes en los tres estudios previos y cuatro en los dos primeros— que pudieron haber formado parte del metabolismo de LUCA.

De las seis funciones enzimáticas comunes a los tres estudios tenemos: tres transferasas, una oxidorreductasa, una liasa y una ligasa. Mientras que las otras cuatro, todas eran hidrolasas.

Además, los investigadores observaron que dentro de estos 10 grupos enzimáticos hay enzimas que usan metales como cofactores para llevar a cabo las reacciones. Esto es clave porque estudios previos sugieren que las metaloenzimas, como se les suele llamar, fueron las primeras en aparecer después de la transición de los péptidos prebióticos a los primeros péptidos funcionales.

Con estas 10 funciones enzimáticas se abre todo un abanico de rutas metabólicas que LUCA podría haber realizado, por ejemplo: la síntesis y degradación de importantes biomoléculas, desde la Coenzima A y pequeños azúcares hasta los N-glicanos y esfingolípidos.

Usando todos estos datos los investigadores reconstruyeron una ruta metabólica representativa que podría reflejar el metabolismo central de las formas de vida más primitivas, por ejemplo, de LUCA. La red comprende 119 nodos (reactantes o metabolitos) y 135 ramas (funciones enzimáticas). Las ramas pintadas de amarillo representan las seis funciones enzimáticas presentes en los tres estudios previos (secuencias genéticas, estructuras proteicas y reacciones bioquímicas conservadas), mientras que las verdes representan las cuatro funciones enzimáticas presentes en los dos primeros (secuencias genéticas y estructuras proteicas conservadas).

LUCA_metabolismo

Este estudio es nos muestra claramente que se puede producir un metabolismo relativamente grande y compleja usando un pequeño número de funciones enzimáticas. Si bien es cierto esto solo es una aproximación obtenida gracias al uso de herramientas bioinformáticas, gracias a ellas tenemos una idea de cómo pudo ser la vida primitiva.


Referencia:

ResearchBlogging.orgGoldman, Aaron David, Baross, John, & Samudrala, Ram (2012). The Enzymatic and Metabolic Capabilities of Early Life PLOS ONE DOI: 10.1371/journal.pone.0039912

Comentarios

  1. Muy interesante, como todas las cosas que subís.
    Saludos David

    ResponderBorrar

Publicar un comentario

Se respetuoso con tus comentarios y críticas. Cualquier comentario ofensivo será eliminado.

Entradas más populares de este blog

¿Por qué tanto miedo al bromuro de etidio?

El bromuro de etidio (BrEt) es un agente químico muy usado en técnicas de biología molecular para teñir nuestros geles de agarosa y poder apreciar nuestras bandas de ADN; ya sean de los productos de extracción o de PCR. Existen dos formas de teñir los geles: i) remojando el gel de agarosa por 15 minutos en una bandeja con BrEt (0,5 mg/L) después de haber hecho la electroforesis o ii) añadiendo el BrEt directamente al gel al momento de prepararlo. Con la primera evitamos contaminar nuestra cámara de electroforesis con BrEt y con la segunda evitamos exponernos a salpicaduras y otros accidentes que pueden ocurrir al hacer la tinción en bandeja. Se han dado cuenta que desde que entramos a un laboratorio de biología molecular nos tienen traumados con el BrEt: "¡Cuidado que te salpique!", "¡no lo huelas!", "¡usa tres guantes!", "¡no es por ese lado!", "¡si te cae en la piel te va a dar cáncer y te puedes morir!", entre otras cosas más.

Ozono por el culo

La insuflación rectal de ozono , que en términos coloquiales es ozono por el culo  ( OxC , de forma abreviada), es una forma de ozonoterapia.  Según sus promotores , esta terapia "es muy potente en cuanto a la eliminación de gérmenes intestinales como virus, bacterias, protozoos, hongos, etc ". Incluso pidieron a la Organización Mundial de la Salud que lo usaran para el tratamiento del Ébola.  Según Ozonomédica , la ozonoterapia, en general, "es una eficaz alternativa en el tratamiento y control de muchas patologías y enfermedades crónicas" que incluso "puede retrasar o evitar la aparición de diabetes, cáncer, artritis, artrosis, entre otras". Paciente recibiendo OxC. Fuente: Ozonoterapia . Sin embargo,  de acuerdo con la Administración de Alimentos y Medicamentos de los Estados Unidos ( FDA ), el ozono es un gas tóxico sin alguna aplicación médica conocida . Si bien es cierto, el ozono nos protege de la peligrosa radiación ultravi

¿Qué favoreció la expansión del Imperio Inca?

Desde el colegio nos han enseñado que la rápida expansión del Imperio Inca se dio gracias a la adopción de nuevas estrategias sociales y políticas, que junto a la gran fuerza laboral adquirida —especialmente de los pueblos sometidos— y un ejército permanente, permitió que dominaran esta parte del continente durante el siglo XV. Sin embargo, de acuerdo a un estudio publicado en Climate of the past , esto no hubiera sido posible sin el aumento de la productividad de sus cultivos que se dio gracias a un incremento de las temperaturas que hubo entre los años 1100 a 1500. Alex Chepstow-Lusty, investigador del Instituto Francés de Estudios Andinos, y sus colaboradores realizaron un análisis paleoclimático de alta resolución (centímetro por centímetro) de los sedimentos obtenidos de la laguna de Marcacocha a 12 kilómetros de Ollantaytambo (Cusco), con el fin de determinar las condiciones climáticas durante el desarrollo y apogeo del Imperio Inca. Se midieron las concentraciones de C-13 (u