Ir al contenido principal

Geometría viral

No hay dudas que una de las cosas más asombrosas y a la vez intrigantes de los virus es que la gran mayoría de ellos tienen formas icosaédricas perfectas, una de las simetrías estéticamente más agradables de la naturaleza.

Los primeros en estudiar los principios básicos de las estructuras virales fueron Donald Caspar y Aaron Klug allá por 1962. Antes de esto, se creía que los virus eran esféricos y, uno que otro, cilíndrico.

Tan pronto se logró obtener imágenes a nivel atómico gracias a la cristalografía de rayos X, la microscopía electrónica y ahora con la criomicroscopía electrónica —una técnica de microscopía que emplea temperaturas criogénicas para revelar las estructuras biológicas— se ha podido observar la belleza de los virus a resoluciones de unos pocos angstroms (un angstrom equivale a 0,000000001 metros).

virus_simetria_1

¿Y por qué los virus se ensamblan de ésta manera? Recientes estudios han demostrado que la simetría icosaédrica es el estado de menor energía en el cual pueden acomodarse las partículas que componen la cápside viral sobre una superficie esférica.

Aquí algunas imágenes más:

virus_simetria_2

Vía | The Virus Research Group – UCLA

Imágenes | Baker et al. Microbiol. Mol. Biol. Rev 63 (4): 869 – 922 PMID: 10585969 (1999).

Comentarios

Entradas más populares de este blog

La oruga derretida

Las larvas de la polilla gitana ( Lymantria dispar ) llevan una vida tranquila. Durante el día, descansan en las grietas de la corteza de los árboles o enterradas en el suelo para evitar ser capturadas por sus depredadores. En las noches, salen de sus escondites y se alimentan de hojas hasta minutos antes del amanecer. A los cuarenta días de vida, se convierten en pupas, y dos semanas después, emergen como polillas adultas. Se aparean, ponen cientos de huevecillos y reinician su ciclo biológico. Oruga de la polilla gitana. Fuente: Wikimedia Commons . Una mañana, una de estas orugas aparece colgada boca abajo en la hoja más alta de una planta. Parece muerta. De pronto, empieza a estirarse y derretirse como si fuera un pedazo de plástico puesto cerca del fuego. La oruga literalmente gotea sobre las hojas que se encuentran debajo. Es una escena es macabra. Ninguna oruga presenció este hecho. Era de día y estaban escondidas. Pero en la noche, sin darse cuenta, se alimentan de las hojas s

¿Por qué tanto miedo al bromuro de etidio?

El bromuro de etidio (BrEt) es un agente químico muy usado en técnicas de biología molecular para teñir nuestros geles de agarosa y poder apreciar nuestras bandas de ADN; ya sean de los productos de extracción o de PCR. Existen dos formas de teñir los geles: i) remojando el gel de agarosa por 15 minutos en una bandeja con BrEt (0,5 mg/L) después de haber hecho la electroforesis o ii) añadiendo el BrEt directamente al gel al momento de prepararlo. Con la primera evitamos contaminar nuestra cámara de electroforesis con BrEt y con la segunda evitamos exponernos a salpicaduras y otros accidentes que pueden ocurrir al hacer la tinción en bandeja. Se han dado cuenta que desde que entramos a un laboratorio de biología molecular nos tienen traumados con el BrEt: "¡Cuidado que te salpique!", "¡no lo huelas!", "¡usa tres guantes!", "¡no es por ese lado!", "¡si te cae en la piel te va a dar cáncer y te puedes morir!", entre otras cosas más.

¿Cómo eran los primeros tomates que llegaron a Europa?

Las primeras exploraciones europeas al continente americano, allá por inicios del siglo XVI, trajeron consigo muchas riquezas, especialmente, plantas que eran cultivas y consumidas al otro lado del mundo. Una de ellas fue el tomate. Hoy es la hortaliza más cultivada en el mundo. Anualmente se producen unas 180 millones de toneladas en 4.85 millones de hectáreas. Los tomates de hoy no se parecen ni saben como los que llegaron a Europa hace 500 años. Esto se debe a que la selección y mejora genética, que se ha dado por décadas, se orientó hacia la obtención de frutos más redondos, uniformes y resistentes, que duren más en los anaqueles de los supermercados y resistan el aplastamiento. La consecuencia fue que, en el proceso, se perdieron aquellos genes y alelos que codifican mayores niveles de azúcares y compuestos volátiles , que son claves en el sabor de este fruto. Con el fin de saber la apariencia que tenían los primeros tomates que llegaron a Europa, un grupo de investigadores neerla