Ir al contenido principal

Revelan dinámica de proteína clave en la división de las bacterias

FtsZ

Un grupo de investigadores del CSIC han dado un paso más para saber cómo funciona una de las proteínas clave para que proliferen muchas bacterias, entre ellas la muy conocida Escherichia coli. Coordinado desde el Centro Nacional de Biotecnología por Miguel Vicente, el principal objetivo de este proyecto es el de encontrar nuevos antibióticos y, para ello, estudian las propiedades de FtsZ, la proteína que inicia el proceso por el que una bacteria se divide en dos.

Marisela Vélez, del Instituto de Catálisis y Petroleoquímica, también del CSIC, ha utilizado un microscopio de fuerza atómica, que permite observar con enorme detalle muestras sumergidas en una gota de líquido, para estudiar FtsZ. Sus observaciones han desvelado detalles muy importantes sobre cómo los polímeros de FtsZ, que son esenciales para la división de la bacteria, se curvan sobre una superficie de mica, llegando a formar círculos. Precisamente en la célula, FtsZ se localiza en el sitio donde se produce la división formando un anillo de mayores dimensiones que al estrecharse acaba por separar a las dos células.

Sobre la superficie de mica, los polímeros de FtsZ se estabilizan de forma transitoria, pero con el tiempo se van reduciendo de diámetro y los círculos se desvanecen. Esto ocurre porque las moléculas que componen el círculo se salen de él al azar, aunque las que se encuentran en los extremos lo hacen aún con mayor frecuencia. Según razonan los investigadores, si este proceso no existiese, los anillos difícilmente se estrecharían y la bacteria no se dividiría. El truco empleado para poder estudiar la formación y desaparición de los círculos ha sido utilizar unas condiciones bioquímicas que permiten ralentizar la separación de las moléculas de FtsZ que los componen. De este modo han podido estudiar este proceso con mayor precisión.

No cabe duda de que los compuestos que bloqueen por completo el proceso de formación o el de disgregación de los círculos de FtsZ inutilizarán el anillo de división en la bacteria impidiéndole su proliferación. En el 2009, David Haydon del Begbroke Science Park y su equipo encontraron una molécula (PC190723) que se une y bloquea la acción de la FtsZ, evitando la proliferación de la bacteria de manera similar a como lo hace el Taxol® con la tubulina en el tratamiento del cáncer. Por ello, los investigadores quieren seguir colaborando con las empresas biotecnológicas que participan en el proyecto hasta encontrar un nuevo antibiótico.

En el trabajo, publicado en PNAS ha requerido una notable integración de diversos conocimientos y técnicas. De hecho, en estas investigaciones han participado el grupo del Centro de Investigaciones Biológicas dirigido por Germán Rivas, científicos del Instituto de Ciencia de Materiales Nicolás Cabrera y el investigador del Departamento de Física Teórica de la Materia Condensada de la Universidad Autónoma de Madrid Pedro Tarazona.

Fuente | CNB-CSIC.


Referencia:

Mateos-Gil P, Paez A, Hörger I, Rivas G, Vicente M, Tarazona P, Vélez M. Depolymerization dynamics of individual filaments of bacterial cytoskeletal protein FtsZ. PNAS 109(21):8133-8138. doi: 10.1073/pnas.1204844109

Comentarios

Entradas más populares de este blog

Fusión y fisión de mitocondrias

Se cree que los procariotas aparecieron en el planeta hace unos 3,500 millones de años, mientras que los eucariotas lo hicieron hace unos 2,000 millones de años. Pero, si los procariotas llevan una ventaja de 1,500 millones de años a los eucariotas, ¿por qué ellos no son los organismos más complejos? La respuesta son las mitocondrias [Les recomiendo leer este artículo publicado en el blog]. Todos conocemos a las mitocondrias, si no las recuerdan, aquí se las presento. Tal vez la imagen que tenemos de ellas es que se encuentran diseminadas por toda la célula, aisladas unas de otras o, a lo mucho, reuniéndose en pequeños grupos. Sin embargo, esto no es así. En realidad, las mitocondrias son unos organelos muy dinámicos, que se encuentran fusionándose y dividiéndose constantemente, pero hasta ahora no se sabe a ciencia cierta que rol cumple este proceso. Axel Kowald de la Universidad Humboldt de Berlín y Tom B. L. Kirkwood de la Universidad de Newcastle han desarrollado una teoría

Ozono por el culo

La insuflación rectal de ozono , que en términos coloquiales es ozono por el culo  ( OxC , de forma abreviada), es una forma de ozonoterapia.  Según sus promotores , esta terapia "es muy potente en cuanto a la eliminación de gérmenes intestinales como virus, bacterias, protozoos, hongos, etc ". Incluso pidieron a la Organización Mundial de la Salud que lo usaran para el tratamiento del Ébola.  Según Ozonomédica , la ozonoterapia, en general, "es una eficaz alternativa en el tratamiento y control de muchas patologías y enfermedades crónicas" que incluso "puede retrasar o evitar la aparición de diabetes, cáncer, artritis, artrosis, entre otras". Paciente recibiendo OxC. Fuente: Ozonoterapia . Sin embargo,  de acuerdo con la Administración de Alimentos y Medicamentos de los Estados Unidos ( FDA ), el ozono es un gas tóxico sin alguna aplicación médica conocida . Si bien es cierto, el ozono nos protege de la peligrosa radiación ultravi

Algodón rosa

La mayoría de las personas dan por hecho que el algodón es blanco. Lo vemos así en hisopos, rollos y torundas. Sin embargo, existen de diversos colores, especialmente, en Perú. Marrón, crema, pardo, verde, son algunos de ellos. Como esos algodones no se pueden teñir, la industria textil optó por las variedades de fibra blanca. Muestras de algodón de color. Fuente: Ing. Patricia Ocampo. En la actualidad hay una mayor concienciación por los impactos ambientales que generan los productos que consumimos. La ropa es una de ellas. Los tintes empleados generan contaminación de los cuerpos de agua. En ese contexto, los algodones pigmentados adquieren mayor relevancia, aunque la variedad de colores existentes es muy limitada. La naturaleza tiene infinidad de colores. Un claro ejemplo son las flores: amarillas, azules, rosadas, violetas, rojas y más. Cada pigmento es producido por diversas enzimas que catalizan reacciones químicas para que una molécula se convierta en otra. Por ejemplo, la tiros