Ir al contenido principal

¿Cómo actúan los calmantes del dolor?

¿Es malo sentir dolor? A pesar que muchos piensen que sí, la sensación del dolor ha sido un aspecto importante de nuestra evolución ya que funciona como un sistema de alerta que se activa para prevenir algún tipo de daño. Si no sintiéramos dolor simplemente no nos daríamos cuenta que nos cortamos un dedo al filetear un pescado, o que nos fracturamos el tobillo después de una caída, o que nos quemamos la lengua al tomar un café muy caliente.

Contamos con detectores de dolor en la mayor parte de nuestro cuerpo, los cuales están conformados por células nerviosas especializadas llamadas nociceptores. A diferencia de otras células nerviosas, éstas se activan sólo cuando el estímulo capaz de causar algún daño supera un determinado umbral. Hay personas que tienen un umbral mucho más alto, por lo tanto, resisten más el dolor.

Cuando el estímulo daña las células, éstas secretan una sustancia presente en sus membranas llamada ácido araquinódico. Luego, unas enzimas llamadas COX-1 y COX-2 convierten este ácido araquinódico en prostaglandinas, que posteriormente participan en las respuestas inflamatorias, el aumento de la temperatura corporal y la reducción del umbral del dolor.

Entonces, si una sustancia evita la acción de las enzimas COX-1 y COX-2 sobre el ácido araquinódico, ¿se podría inhibir el dolor? Pues sí, y esa es precisamente la forma cómo actúan dos de los analgésicos más usados en el mundo: la aspirina y el ibuprofeno. Para entender mejor este tema, no puedes perderte el siguiente TEDEd video [Está en inglés, pero no tendrás problemas en comprenderlo, puedes activar los subtítulos a través del CC].

Además, tal vez te interesen estos artículo relacionados con el dolor:

¿Por qué la mordedura de una serpiente de coral causa tanto dolor?

El uso del Zinc como supresor del dolor.

Científicos revelan cómo funciona el paracetamol.

Comentarios

Entradas más populares de este blog

La manifestación poco conocida de la tenia solitaria

En las profundidades del intestino delgado puede habitar un extraño huésped. Parece un fetuchini tan largo como una anaconda, pero dividido en decenas de pequeños segmentos llamados proglótides. Vive anclado a la pared intestinal por unos espeluznantes ganchos y ventosas que tiene en la cabeza (si así se le puede llamar a eso). No tiene boca porque se alimenta a través de la piel. Es la famosa tenia solitaria . Escólex de Taenia solium con cuatro ventosas y rostelo con ganchos. Fuente: CDC. Le llaman solitaria porque no necesita de una compañera (o compañero) para poder formar una familia. Son hermafroditas. Cada proglótido maduro tiene su propio suministro de óvulos y esperma, capaces de producir unos 60 000 huevos muy resistentes que son liberados a través de nuestras heces . Al menos seis segmentos llenos de huevos son liberados cada día por una persona infectada. Cuando los cerdos comen alimentos contaminados con heces humanas, común en algunas zonas de la sierra y selva del paí

¿Por qué tanto miedo al bromuro de etidio?

El bromuro de etidio (BrEt) es un agente químico muy usado en técnicas de biología molecular para teñir nuestros geles de agarosa y poder apreciar nuestras bandas de ADN; ya sean de los productos de extracción o de PCR. Existen dos formas de teñir los geles: i) remojando el gel de agarosa por 15 minutos en una bandeja con BrEt (0,5 mg/L) después de haber hecho la electroforesis o ii) añadiendo el BrEt directamente al gel al momento de prepararlo. Con la primera evitamos contaminar nuestra cámara de electroforesis con BrEt y con la segunda evitamos exponernos a salpicaduras y otros accidentes que pueden ocurrir al hacer la tinción en bandeja. Se han dado cuenta que desde que entramos a un laboratorio de biología molecular nos tienen traumados con el BrEt: "¡Cuidado que te salpique!", "¡no lo huelas!", "¡usa tres guantes!", "¡no es por ese lado!", "¡si te cae en la piel te va a dar cáncer y te puedes morir!", entre otras cosas más.

La citometría de masas, una novedosa técnica para estudiar las células individualmente

Los citómetros de flujo han sido una herramienta fundamental en el descubrimiento y caracterización de los diferentes tipos de células que conforman el sistema inmune. Esta técnica es tan poderosa que permite analizar más 10 parámetros simultáneamente, gracias al uso de anticuerpos marcados con moléculas fluorescentes. Sin embargo, la citometría de flujo parece haber llegado a su límite tecnológico, ya que cuando se pretende analizar más de 10 parámetros a la vez, la superposición de los espectros luminosos dificulta el análisis de los datos. Un grupo de investigadores norteamericanos y canadienses han mejorado la técnica gracias al uso de los principios de la espectrometría de masas según reportaron ayer en Science . De manera sencilla, la citometría de flujo consiste en el paso de una suspensión celular a través de un láser. Para que las células puedan ser detectadas y diferenciadas unas de otras, son marcadas con moléculas fluorescentes que se excitan cuando el rayo láser inci