Ir al contenido principal

Revelan estructura de proteína clave en la unión del fago a la bacteria

Estudio puede contribuir con el desarrollo antibióticos basados en fagos.

fago_cola

Los bacteriófagos (fagos) son virus especializados en infectar bacterias para multiplicarse y diseminarse. Descubiertos hace más de 90 años, han jugado un rol importante en el desarrollo de la biotecnología. Fueron usados para controlar la disentería en los niños, incluso se llegaron a comercializar preparados basados en ellos para el tratamiento de otras infecciones. Sin embargo, el descubrimiento de la penicilina y otros antibióticos de amplio espectro hizo que la terapia basada en los fagos fuera abandonada allá por la década de 1940.

Pero ¿quién diría que la vida les daría una nueva oportunidad? La aparición de bacterias patógenas cada vez más resistentes a los antibióticos usados hoy en día ha provocado que los científicos busquen otras maneras de hacerles frente. Algunos de ellos están reevaluando el potencial de los fagos para el desarrollo de nuevas estrategias terapéuticas más efectivas.

Con el fin de entender el proceso de anclaje del fago a la bacteria, Carmela García-Doval y Mark van Raaij del Centro Nacional de Biotecnología del CSIC (España) han revelado la estructura de la proteína que forma la cola del fago T7. El estudio publicado hoy en PNAS muestra también la localización precisa de la posible región responsable del anclaje y sugiere que mutaciones a este nivel podrían cambiar la afinidad del fago hacia otras bacterias.

Estructura

El 95% de los fagos pertenecen al orden de los Caudovirales. Estos se caracterizan por tener una forma muy particular, similares a pequeñas sondas espaciales. Están formados por una cabeza hueca proteica de forma icosaédrica llamada cápside —que es donde se encuentra todo el material genético del virus—, y una cola que sirve para reconocer y unirse a la superficie de las bacterias.

Los fagos del tipo T7 tienen una cola con seis fibrillas unidas a su extremo. Cada una está formada por tres copias de la proteína gp17, que es la responsable del reconocimiento y unión del fago a la bacteria, en este caso, la Escherichia coli.

García-Doval & van Raaij purificaron y cristalizaron el extremo carboxil-terminal (o extremo final) de la proteína gp17 para poder determinar su conformación tridimensional a través de la difracción de rayos X. La técnica permitió obtener la estructura de dicho fragmento con una resolución de 0.2 nanómetros. En ella se pudo apreciar la formación de dos dominios: la pirámide triangular (inferior) y la punta globular (superior), ambos formados por estructuras del tipo beta láminas —que les dan gran estabilidad—, unidos a través de una cadena flexible de aminoácidos que podría ser fundamental en el proceso de infección.

Especificidad

La principal característica de los fagos es su especificidad por un tipo de bacteria. Esto es una ventaja al momento de desarrollar un antibiótico porque te aseguras que sólo la bacteria indeseada sea la eliminada. Este poder selectivo ha sido aprovechado también en la industria alimentaria para la tipificación, identificación e incluso eliminación de bacterias dañinas para la salud que podrían estar en los alimentos.

Gracias a la gran resolución obtenida por los investigadores del CSIC y la comparación con proteínas similares en especies como Yersinia pestis (responsable de la peste bubónica), se logró localizar regiones específicas en la punta globular que podrían ser responsables del anclaje del fago a la superficie de la bacteria. Mutaciones en estas regiones pueden afectar dicha unión, incluso cambiar su especificidad hacia otra especie de bacteria.

Los investigadores dicen que se necesitan más experimentos con versiones mutantes de la proteína gp17 para identificar los aminoácidos que confieren la especificidad por un tipo de bacteria. Asimismo, se requiere determinar la estructura de la unión de las fibras de la cola del fago con el lipopolisacárido de la bacteria, a través de una cocristalización, para confirmar si el punto de anclaje se da en la punta globular de la proteína.

Conocer a fondo esta proteína permitirá desarrollar versiones mutantes con una afinidad por bacterias patógenas humanas, las cuales podrán ser usadas como agentes terapéuticos. Este mismo de estudio puede ser aplicado a otros tipos de fagos, especialmente, aquellos que pueden infectar bacterias capaces de formar biopelículas —o algún otro tipo de estructura de resistencia— que las protegen del efecto de los antibióticos.



Referencia:

ResearchBlogging.orgGarcia-Doval, C., & Raaij, M.J.V. (2012). Structure of the receptor-binding carboxy-terminal domain of bacteriophage T7 tail fibers. Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1119719109

Comentarios

Entradas más populares de este blog

¿Qué fue del estudio más grande sobre la seguridad de los transgénicos?

La tarde del 11 de noviembre de 2014, en un hotel londinense, se anuncia el lanzamiento de "Factor GMO", el experimento a largo plazo más extenso y detallado jamás realizado sobre un alimento transgénico y su plaguicida asociado.


Con un costo estimado de 25 millones de dólares, el estudio buscaba aportar —con una solidez sin precedentes— valiosa información para permitir a las autoridades reguladoras, los gobiernos y la población general, responder si es seguro el consumo de Organismos Genéticamente Modificados (OGM) o la exposición a su herbicida asociado en condiciones reales.

El experimento —que se llevaría a cabo en un laboratorio secreto en el territorio ruso para evitar cualquier injerencia externa— consistía en someter a 6.000 ratas de laboratorio a diversas dietas basadas en el maíz transgénico NK603 y su herbicida asociado (RoundUp), cuyo principio activo es el glifosato. Es similar al famoso estudio realizado Guilles-Eric Seralini, pero a mayor escala. Solo para re…

Cuando los antioxidantes promueven el cáncer

Hemos comentado muchas veces que las Especies Reactivas del Oxígeno (ROS, por sus siglas en inglés) están involucrados con el envejecimiento y con el desarrollo del cáncer. Esto se debe a que los ROS son altamente reactivos, por lo tanto, son capaces de dañar el ADN generando mutaciones. Por suerte existen los antioxidantes, quienes son los encargados de atrapar los ROS y mantenerlos en niveles que no generen daño alguno. Sin embargo, un grupo internacional de investigadores liderados por la Dra. Gina DeNicola del Instituto de Investigaciones de Cambridge revelaron que el factor de transcripción encargado de activar los genes que nos protegen de los ROS, también puede favorecer el desarrollo de ciertos tumores según un artículo publicado ayer en Nature.Normalmente, cuando las células son sometidas a un estrés fisiológico o sufren de algún tipo de daño genético, se activan una serie de genes y factores de transcripción que, de manera coordinada, regulan el funcionamiento de la célula, …

Pruebas rápidas y moleculares para COVID-19

Desde que se anunció la adquisición de más de un millón de "pruebas rápidas" para detectar personas con COVID-19, a fines de marzo, estuvieron en el ojo de la tormenta. Diversos científicos se manifestaron a favor o en contra de ellas, tanto en televisión como en redes sociales. El público general también tomó posición, más basada en simpatías políticas que en ciencia. Aquí les hago un resumen para entender de qué va todo esto.
Definamos conceptos "Pruebas moleculares" es un nombre genérico empleado para referirnos a los análisis basados en ácidos nucleicos, que puede ser de ADN o ARN. Por ejemplo, una prueba de paternidad es una prueba molecular. Se analiza el ADN del presunto padre y del hijo(a), para ver si comparten los mismos marcadores genéticos (fragmentos de ADN que son heredados). En el caso del coronavirus (SARS-CoV-2), la prueba molecular detecta marcadores genéticos en su ARN (otra molécula que también puede codificar la información genética).

La prueb…