Ir al contenido principal

El cromosoma Y no desaparecerá

Estudio revela que la región específica masculina del cromosoma Y (MSY) ha perdido un solo gen en los últimos 25 millones de años.

cromosoma_y

Sé que muchos han oído por ahí que el cromosoma Y podría desaparecer en unos cuantos millones de años. Todo esto se debe a un peculiar artículo publicado en Nature en el 2002 [Aquí el pdf.]. En él Aitken & Marshall determinaron que la tasa de pérdida o inactivación de genes en el cromosoma Y era de 5 por cada millón de años, y sugerían que si esta tasa de decaimiento continuaba, éste desaparecería en unos 10 millones de años.

Un nuevo estudio publicado el 22 de Febrero en Nature dice todo lo contrario ya que un grupo de investigadores liderados por el Dr. David Page, director del Whitehead Institute (EEUU), han secuenciado la región específica masculina del cromosoma Y (MSY) del macaco Rhesus para compararlo con el de los humanos, encontrando un único gen de diferencia, el cual lo perdimos en los últimos 25 millones de años.

Haciendo un poco de historia, los cromosomas sexuales X e Y evolucionaron a partir de un par de cromosomas autosómicos, hace unos 200 a 300 millones de años. En el proceso, el cromosoma X ha conservado ciertos elementos funcionales originales, mientras que el cromosoma Y los ha ido perdiendo gradualmente hasta retener sólo el 3% de los genes autosómicos ancestrales (decaimiento genético).

Durante la meiosis (división celular que permite la formación del óvulo y los espermatozoides), cada cromosoma busca su par homólogo para intercambiar material genético en un proceso conocido como recombinación genética o crossing-over. Sin embargo, en los cromosomas sexuales, el 95% del cromosoma Y no puede recombinarse con el cromosoma X. A esta región se le llama MSY, y está compuesta por cinco regiones originadas en cinco etapas diferentes conocidas como “estratificación”, cada uno con su propio curso de decaimiento genético.

El primer estrato apareció hace 240 millones de años; mientras que el último y el que presenta la mayor similaridad genética entre la región MSY y el cromosoma X, apareció hace 30 millones de años. Entonces, ¿será posible que el decaimiento genético continúe hasta la desaparición del cromosoma Y?

Para responder a esta pregunta, Page y su equipo decidieron secuenciar la región MSY del macaco Rhesus, un pariente evolutivo del hombre con quien compartimos un ancestro común hace 25 millones de años, justo después del último evento de estratificación, para que a través de un análisis comparativo podamos ver la evolución del cromosoma Y humano.

Lo primero que saltó a la visa fue que la región MSY era muy corta comparada con la misma región en el chimpancé y el hombre, y presentaba la heterocromatina (una región rica en ADN súper condensado) sólo en los centrómeros. Por otro lado, la posición de una región llamada PAR (región pseudoatosómica simple) es la misma en los macacos, chimpancés y humanos, lo que confirmaría que la última estratificación se dio antes de que estas tres especies divergieran.

cromosoma_y_comparacion

Al comparar las regiones MSY, los investigadores encontraron 30 genes y pseudogenes ancestrales en estas tres especies. En los cuatro primeros estratos, los humanos y los macacos presentan los mismos 18 genes ancestrales, sugiriendo que en los últimos 25 millones de años —tiempo que separa a estas dos especies— no hubo pérdida genética alguna en estas regiones; aunque seis de estos genes perdieron su función volviéndose pseudogenes.

Esta estabilidad evolutiva observada en los cuatro primeros estratos demuestra la acción de una selección purificadora, que permite preservar los genes ancestrales gracias a la ausencia de la recombinación sexual. Sin embargo, al analizar el último estrato, que apareció recién hace 30 millones de años, observaron que los macacos tenían activo un gen que en los humanos y los chimpancés ya no lo está (es un pseudogén).

En el caso de los chimpancés, la historia es diferente. Comparado con los macacos y los humanos, estos simios perdieron cinco genes ancestrales en los cuatro primeros estratos, a pesar que con ellos compartimos un mismo ancestro común hace tan solo 6 millones de años. La explicación es que su promiscuidad ha favorecido la competencia de los espermatozoides, que para adaptarse a ella, han tenido que evolucionar de una manera más acelerada, sobre todo en la región MSY donde se encuentran los genes asociados a la espermatogénesis.

Gracias a este estudio hemos podido determinar el número de genes ancestrales y su pérdida a través del tiempo, en tres puntos de la historia evolutiva humana: cuando compartimos un ancestro común con los chimpancés (hace 6 millones de años), cuando compartimos un ancestro común con los macacos Rhesus (hace 25 millones de años), cuando se formaron los cinco estratos de la región MSY (hace 30 a 240 millones de años).

De los resultados podemos concluir que durante los últimos 25 millones de años no hemos perdido ningún gen ancestral, a excepción de uno que forma parte del último estrato de la secuencia MSY. Esto indicaría que la tasa de decaimiento genético es mayor al inicio de la formación de cada estrato y con el tiempo se va desacelerando. Nosotros ya hemos alcanzado un nivel de estabilidad y, según las estimaciones de los autores, tenemos un cromosoma Y para rato, al menos por 50 millones de años más.

En todo caso, si algún día llega a desaparecer el cromosoma Y, no quiere decir que los hombres se extinguirán, sino que los cromosomas autosómicos —que son los otros 22 pares— serán los encargados de determinar el sexo de la persona, tal como ocurre en otras especies de animales, como en los reptiles, cuyo sexo está determinado, en ciertos casos, por la temperatura a la que los huevos son incubados.


Referencia:

ResearchBlogging.orgHughes, J., Skaletsky, H., Brown, L., Pyntikova, T., Graves, T., Fulton, R., Dugan, S., Ding, Y., Buhay, C., Kremitzki, C., Wang, Q., Shen, H., Holder, M., Villasana, D., Nazareth, L., Cree, A., Courtney, L., Veizer, J., Kotkiewicz, H., Cho, T., Koutseva, N., Rozen, S., Muzny, D., Warren, W., Gibbs, R., Wilson, R., & Page, D. (2012). Strict evolutionary conservation followed rapid gene loss on human and rhesus Y chromosomes Nature DOI: 10.1038/nature10843

Imagen: Flickr @stinkair

Comentarios

Entradas más populares de este blog

Algodón rosa

La mayoría de las personas dan por hecho que el algodón es blanco. Lo vemos así en hisopos, rollos y torundas. Sin embargo, existen de diversos colores, especialmente, en Perú. Marrón, crema, pardo, verde, son algunos de ellos. Como esos algodones no se pueden teñir, la industria textil optó por las variedades de fibra blanca. Muestras de algodón de color. Fuente: Ing. Patricia Ocampo. En la actualidad hay una mayor concienciación por los impactos ambientales que generan los productos que consumimos. La ropa es una de ellas. Los tintes empleados generan contaminación de los cuerpos de agua. En ese contexto, los algodones pigmentados adquieren mayor relevancia, aunque la variedad de colores existentes es muy limitada. La naturaleza tiene infinidad de colores. Un claro ejemplo son las flores: amarillas, azules, rosadas, violetas, rojas y más. Cada pigmento es producido por diversas enzimas que catalizan reacciones químicas para que una molécula se convierta en otra. Por ejemplo, la tiros

Fusión y fisión de mitocondrias

Se cree que los procariotas aparecieron en el planeta hace unos 3,500 millones de años, mientras que los eucariotas lo hicieron hace unos 2,000 millones de años. Pero, si los procariotas llevan una ventaja de 1,500 millones de años a los eucariotas, ¿por qué ellos no son los organismos más complejos? La respuesta son las mitocondrias [Les recomiendo leer este artículo publicado en el blog]. Todos conocemos a las mitocondrias, si no las recuerdan, aquí se las presento. Tal vez la imagen que tenemos de ellas es que se encuentran diseminadas por toda la célula, aisladas unas de otras o, a lo mucho, reuniéndose en pequeños grupos. Sin embargo, esto no es así. En realidad, las mitocondrias son unos organelos muy dinámicos, que se encuentran fusionándose y dividiéndose constantemente, pero hasta ahora no se sabe a ciencia cierta que rol cumple este proceso. Axel Kowald de la Universidad Humboldt de Berlín y Tom B. L. Kirkwood de la Universidad de Newcastle han desarrollado una teoría

Ozono por el culo

La insuflación rectal de ozono , que en términos coloquiales es ozono por el culo  ( OxC , de forma abreviada), es una forma de ozonoterapia.  Según sus promotores , esta terapia "es muy potente en cuanto a la eliminación de gérmenes intestinales como virus, bacterias, protozoos, hongos, etc ". Incluso pidieron a la Organización Mundial de la Salud que lo usaran para el tratamiento del Ébola.  Según Ozonomédica , la ozonoterapia, en general, "es una eficaz alternativa en el tratamiento y control de muchas patologías y enfermedades crónicas" que incluso "puede retrasar o evitar la aparición de diabetes, cáncer, artritis, artrosis, entre otras". Paciente recibiendo OxC. Fuente: Ozonoterapia . Sin embargo,  de acuerdo con la Administración de Alimentos y Medicamentos de los Estados Unidos ( FDA ), el ozono es un gas tóxico sin alguna aplicación médica conocida . Si bien es cierto, el ozono nos protege de la peligrosa radiación ultravi