Ir al contenido principal

Científicos usan novedosa técnica de microscopía para observar el funcionamiento cerebral

Neuronas de ratones vivos fueron capturados en video con una resolución de 70 nanómetros.

nanoscopy

Uno de los grandes retos de las neurociencias es estudiar el funcionamiento del cerebro a nivel neuronal y en tiempo real. Novedosas técnicas han aparecido en el mercado, por ejemplo: la microscopía confocal y multifotón. Estas técnicas son muy parecidas ya que en ambas se usa una luz puntual (láser) para excitar la muestra marcada con moléculas fluorescentes.

En el microscopio confocal, el láser es continuo, y la luz emitida por la muestra es recibida a través de colimadores especiales (‘pinhole’) para eliminar la luz desenfocada y los destellos, generándose imágenes en tres dimensiones y con un alto nivel de contraste. En el microscopio multifotón, el láser es pulsante y sólo escanea un plano focal a la vez, evitando así la necesidad de usar el pinhole; además usa un detector externo para aumentar la sensibilidad.

El problema con estas técnicas es que al láser le toma un buen tiempo escanear toda la muestra y, durante el proceso, se generan radicales libres que podrían dañar las células. Por otro lado, la resolución de estos dos microscopios está limitada por la longitud de onda de la luz empleada en el análisis (400nm a 700nm). Esto quiere decir que estructuras celulares del orden de los 200nm para abajo no podrían ser observadas.

Aquí más información.

Con el fin de superar estos inconvenientes, científicos del Instituto Max Planck (Alemania) liderados por el Dr. Sebastian Berning, han desarrollado una técnica basada en la microscopía de depleción por emisión estimulada (STED, stimulated emission depletion microscopy), una técnica que permite alcanzar una resolución del orden de los 60nm, para estudiar el funcionamiento neuronal en tiempo real. El estudio fue publicado el 3 de Febrero en Science. 

En 1873, el físico y uno de los pioneros en la óptica moderna, Ernst Abbe, descubrió un paradigma dentro de la microscopía: la incapacidad de los microscopios basados en lentes ópticas de discernir detalles que sean menores a la mitad de la longitud de onda de la luz (que va de los 400 a 700nm), un límite de resolución impuesto por la difracción.

La microscopía STED permite superar este inconveniente usando dos láser: El primer láser excita las moléculas fluorescentes de la muestra tal como lo hace un microscopio confocal [En la figura: Exc PSF]. El segundo láser (compuesto por fotones de menor energía) sale un instante después del primero y es el encargado de atenuar la emisión de la fluorescencia periférica al punto de excitación del primer láser [En la figura: STED PSF]. De esta manera se genera una especie de rosquilla, donde el punto central será el único que emita fluorescencia [En la figura: Eff PSF], aumentando así la resolución de la microscopía.

STED

Lo primero que hicieron Berning y sus colegas fue modificar genéticamente a un ratón para que produzca la proteína fluorescente amarilla (EYFP: Enhanced Yellow Fluorescent Protein) dentro del citoplasma de sus neuronas. Luego, anestesiaron al ratón y le hicieron un pequeño agujero de 2mm de diámetro en el cráneo (trepanación), justo sobre la corteza somatosensorial, el cual cubrieron con una pequeña lámina de vidrio. Finalmente, ubicaron el microscopio STED sobre la lámina y empezaron a tomar imágenes del cerebro en funcionamiento cada 10 segundos para crear el siguiente video:

2012 ©Science DOI:10.1126/science.1215369 [Supporting Online Material]

En el video podemos ver que las conexiones neuronales a través de las dendritas presentan un comportamiento muy dinámico, moviéndose y cambiando de forma a cada minuto. Según los autores, esta técnica permitirá investigar a fondo cómo se da el desarrollo cerebral in situ, determinar las conexiones defectuosas presentes en cerebros de ratones diseñados para expresar enfermedades neurológicas humanas y observar el efecto de ciertas sustancias psicoactivas y compuestos destinados a aliviar el dolor, quitar el insomnio, aliviar la depresión, etc., en la sinapsis.


Referencia:

ResearchBlogging.orgBerning, S., Willig, K., Steffens, H., Dibaj, P., & Hell, S. (2012). Nanoscopy in a Living Mouse Brain Science, 335 (6068), 551-551 DOI: 10.1126/science.1215369


Esta entrada participa en el VII Carnaval de Tecnología albergado este mes en el blog Zemiorka.

Comentarios

Entradas más populares de este blog

Cuatro generaciones de ratas son alimentadas con maíz transgénico y no les pasa nada

En toda conversación o debate sobre transgénicos, no falta alguien que dice que son perjudiciales para la salud. En muchos casos, la preocupación es sincera y con una explicación clara sobre el proceso regulatorio al que son sometidos estos productos para demostrar su inocuidad y seguridad, quedan tranquilos. Pero hay personas que, a pesar de la contundente evidencia sobre la seguridad de los transgénicos para el consumo humano, insisten en que esos estudios no sirven porque no se hacen evaluaciones a largo plazo.
Bueno, un reciente estudio publicado en Journal of Agricultural and Food Chemistry evalúa el efecto del consumo de un maíz transgénico (DBN9936), que posee el gen cry1Ab (resistencia a insectos) y epsps (tolerancia a glifosato), a lo largo de cuatro generaciones (F0, F1, F2 y F3). La finalidad fue ver si el consumo de maíz transgénico provoca algún efecto en la capacidad reproductiva de las ratas o en sus descendientes.
El experimento inició con 180 ratas divididos en tres gru…

¿Qué fue del estudio más grande sobre la seguridad de los transgénicos?

La tarde del 11 de noviembre de 2014, en un hotel londinense, se anuncia el lanzamiento de "Factor GMO", el experimento a largo plazo más extenso y detallado jamás realizado sobre un alimento transgénico y su plaguicida asociado.


Con un costo estimado de 25 millones de dólares, el estudio buscaba aportar —con una solidez sin precedentes— valiosa información para permitir a las autoridades reguladoras, los gobiernos y la población general, responder si es seguro el consumo de Organismos Genéticamente Modificados (OGM) o la exposición a su herbicida asociado en condiciones reales.

El experimento —que se llevaría a cabo en un laboratorio secreto en el territorio ruso para evitar cualquier injerencia externa— consistía en someter a 6.000 ratas de laboratorio a diversas dietas basadas en el maíz transgénico NK603 y su herbicida asociado (RoundUp), cuyo principio activo es el glifosato. Es similar al famoso estudio realizado Guilles-Eric Seralini, pero a mayor escala. Solo para re…

¿Por qué tanto miedo al bromuro de etidio?

El bromuro de etidio (BrEt) es un agente químico muy usado en técnicas de biología molecular para teñir nuestros geles de agarosa y poder apreciar nuestras bandas de ADN; ya sean de los productos de extracción o de PCR. Existen dos formas de teñir los geles: i) remojando el gel de agarosa por 15 minutos en una bandeja con BrEt (0,5 mg/L) después de haber hecho la electroforesis o ii) añadiendo el BrEt directamente al gel al momento de prepararlo. Con la primera evitamos contaminar nuestra cámara de electroforesis con BrEt y con la segunda evitamos exponernos a salpicaduras y otros accidentes que pueden ocurrir al hacer la tinción en bandeja.


Se han dado cuenta que desde que entramos a un laboratorio de biología molecular nos tienen traumados con el BrEt: "¡Cuidado que te salpique!", "¡no lo huelas!", "¡usa tres guantes!", "¡no es por ese lado!", "¡si te cae en la piel te va a dar cáncer y te puedes morir!", entre otras cosas más.

Si b…