Ir al contenido principal

Científicos descubren microtúbulos en bacterias

Su facilidad para sintetizarse in vitro facilitará el desarrollo de fármacos anticancerígenos.

microtubulo

¿Qué distingue a una bacteria de una célula eucariota? No solo es la ausencia del núcleo y otros organelos internos como las mitocondrias o los lisosomas. Las bacterias tampoco presentan microtúbulos.

Los microtúbulos están formados por dos proteínas —la tubulina α y β— las cuales se disponen intercaladamente para formar largos filamentos (trece de ellos forman un microtúbulo). Las bacterias, por su parte, presentan una estructura filamentosa sencilla que participa en la fisión binaria (división de la bacteria), hechos a base de una proteína llamada FtsZ. Las tubulinas y la FtsZ forman parte de la misma familia de proteínas, sin embargo no están muy relacionadas entre sí, dificultando la comprensión del origen evolutivo de los microtúbulos.

Gracias a su importancia en la división, transporte y movilidad celular, los científicos están considerando a los microtúbulos como potenciales blancos para el desarrollo de nuevos agentes anticancerígenos. Lamentablemente, su complejidad estructural dificulta su producción en el laboratorio.

En un estudio publicado en PLoS Biology, investigadores estadounidenses liderados por Martin Pilhofer y Grant Jensen del Instituto Tecnológico de California (Caltech), han reportado el descubrimiento de microtúbulos en bacterias del género Prosthecobacter. Gracias a que presentan una estructura más sencilla, los científicos pudieron sintetizarla con relativa facilidad en el laboratorio.

La idea de bacterias con microtúbulos parecía descabellada. Todo cambió en el 2002 cuando un grupo de investigadores de la Universidad de Washington descubrieron la presencia de genes bastante relacionados con las tubulinas α y β de eucariotas en cepas del género Prosthecobacter. Estos genes conocidos como btubA y btubB debían codificar para dos tipos de tubulinas bacterianas capaces de ensamblarse y formar microtúbulos. Sin embargo, pasaban los años y nadie podía observarlos.

Encontrar los microtúbulos bacterianos se había convertido en “la búsqueda del tesoro perdido de la microbiología”. La única pista era un ‘rumor genético’ sobre su existencia. Decididos a encontrarlos, Pilhofer y sus colaboradores usaron diferentes cepas de Prosthecobacter, entre ellas, una que no portaban los genes para la tubulina bacteriana (ΔbtubAB). Cuando analizaron las imágenes obtenidas por criomicroscopía electrónica [Figura de portada], los investigadores observaron unas estructuras filamentosas con forma tubular que estaban presentes en la mayoría de las bacterias, menos en aquellas que no portaban los genes btubAB. ¡Por fin se había encontrado los famosos microtúbulos bacterianos!

Estos filamentos tubulares se hallaban principalmente en las prostecas (prolongaciones celulares usadas por las bacterias para adherirse a las superficies). Los investigadores se llevaron una sorpresa al ver que los químicos usados en la fijación de las muestras degradaban los filamentos. He aquí la razón de por qué nadie los pudo observar antes.

Para facilitar el estudio, Pilhofer y su equipo transfirieron los genes btubAB de las Prosthecobacter a E. coli, una bacteria mucho más conocida y fácil de manejar. Los microtúbulos se expresaron adecuadamente en su nuevo anfitrión. Además, los investigadores purificaron las dos tubulinas —bTubA y bTubB— y lograron formar los microtúbulos fuera de la bacteria, demostrando así la facilidad de obtenerlas in vitro.

microtubulo1Las imágenes de criomicroscopía electrónica mostraron, a través de un corte transversal, que los microtúbulos tenían forma pentagonal y su diámetro era de unos 7.6nm. De estos resultados se pudo deducir que los microtúbulos bacterianos están formados sólo por cinco filamentos —en lugar de los 13 encontrados en los eucariotas.

Muchos investigadores consideran que las tubulinas bacterianas bTubA y bTubB han evolucionado a partir de las tubulinas α y β de los eucariotas modernos. Sin embargo, Pilhofer cree que éstas divergieron de una tubulina ancestral formando dos sub-familias. Su hipótesis se basa en que, a diferencia de su contraparte eucariota, las tubulinas bacterianas son más primitivas porque no requieren de chaperonas —proteínas que ayudan a dar la forma final a otras proteínas recién sintetizadas— para generar los microtúbulos. Además, la estructura tubular de cinco filamentos es la arquitectura más simple conocida —a partir de ella evolucionaron los microtúbulos más complejos.

No obstante, aún queda un misterio por resolver: ¿de dónde se originaron los genes que hoy encontramos en las Prosthecobacter? Resulta que los genes btubA y btubB están inmersos en operones distintos, ubicados en diferentes partes del cromosoma bacteriano. Esto indicaría que Prosthecobacter adquirió estos genes por transferencia horizontal, a partir de un linaje bacteriano no identificado que también porta los genes btubAB naturalmente. La otra hipótesis es que los genes fueron heredados del último ancestro común de todos los Verrucomicrobios y que los otros grupos de este filo lo perdieron durante su evolución.

Lo interesante de los microtúbulos bacterianos es su facilidad de ser producidos en el laboratorio ya que no requieren de chaperonas y otras proteínas accesorias para sintetizarse. Además, son muy estables y pueden ser fácilmente mutados y expresados en E. coli facilitando los estudios de diferentes fármacos con potenciales efectos anticancerígenos.


Referencia:

ResearchBlogging.orgPilhofer, M., Ladinsky, M., McDowall, A., Petroni, G., & Jensen, G. (2011). Microtubules in Bacteria: Ancient Tubulins Build a Five-Protofilament Homolog of the Eukaryotic Cytoskeleton PLoS Biology, 9 (12) DOI: 10.1371/journal.pbio.1001213

Comentarios

Publicar un comentario

Se respetuoso con tus comentarios y críticas. Cualquier comentario ofensivo será eliminado.

Entradas más populares de este blog

Fusión y fisión de mitocondrias

Se cree que los procariotas aparecieron en el planeta hace unos 3,500 millones de años, mientras que los eucariotas lo hicieron hace unos 2,000 millones de años. Pero, si los procariotas llevan una ventaja de 1,500 millones de años a los eucariotas, ¿por qué ellos no son los organismos más complejos? La respuesta son las mitocondrias [Les recomiendo leer este artículo publicado en el blog]. Todos conocemos a las mitocondrias, si no las recuerdan, aquí se las presento. Tal vez la imagen que tenemos de ellas es que se encuentran diseminadas por toda la célula, aisladas unas de otras o, a lo mucho, reuniéndose en pequeños grupos. Sin embargo, esto no es así. En realidad, las mitocondrias son unos organelos muy dinámicos, que se encuentran fusionándose y dividiéndose constantemente, pero hasta ahora no se sabe a ciencia cierta que rol cumple este proceso. Axel Kowald de la Universidad Humboldt de Berlín y Tom B. L. Kirkwood de la Universidad de Newcastle han desarrollado una teoría

El mapa de las rutas metabólicas… Animado!

¿Qué es una ruta o vía metabólica? De manera sencilla, es el flujo de reacciones que sigue un determinado compuesto al ingresar a la célula, de esta manera, se transforma en una molécula más compleja (biosíntesis o anabolismo) o en una más sencilla (degradación o catabolismo). Por ejemplo: el pan tiene una gran variedad de compuestos químicos, pero el más abundante es el almidón —presente en la harina con el que es elaborado. El almidón es degradado por una serie de reacciones químicas gracias a unas enzimas llamadas amilasas, convirtiéndose en pequeñas unidades de glucosa. La glucosa ingresa a la célula y pasa por una serie de reacciones para llegar a formar dos moléculas de piruvato. Gráficamente lo podemos ver de la siguiente manera: Esta forma de graficarla se ve muy fría y poco llamativa, es más, parece ser muy difícil de aprenderla y no nos dice nada de como es el flujo de las otras moléculas que participan en la reacción, por ejemplo: el ADP y el NADH. Además, ésta sol

Crea tus propias rutas metabólicas con PathVisio

Alguna vez se han preguntado como hacen los científicos para hacer las rutas metabólicas que vemos en los libros o en los artículos científicos? Usan programas especializados en este tipo de diseños, es algo así como un AutoCad para biólogos. Aunque también lo puedes hacer en Power Point o en Corel Draw, pero estos programas no entenderían el contexto biológico de la ruta metabólica, las conexiones entre genes y proteínas. PathVisio es una herramienta que te permite crear rutas metabólicas con significado biológico para tus presentaciones o para publicarlos en un artículo o una monografía. Y si ya eres un investigador que usa técnicas de biología molecular avanzadas como el secuenciamiento genético y los microarreglos, puedes diseñar nuevas vías metabólicas, a partir de tus resultados y exportarlos a WikiPathways . También te permite descargar rutas metabólicas y base de datos de genes de organismos modelos muy usados en biología como son de Drosophila melanogaster , Saccharomy