Ir al contenido principal

Bacterias de la piel producen “efecto AXE” sobre los mosquitos de la malaria

Compuestos volátiles generados por estas bacterias nos vuelven más o menos atractivos para los mosquitos.

malaria

Muchos nos hemos preguntado ¿por qué los moquitos pican más a unos que a otros?. Resulta que estos insectos se guían por señales químicas que emanamos de nuestro cuerpo. Bajo ese mismo principio actúan los repelentes, que están conformados por sustancias químicas que no son atractivas para ellos.

Las bacterias de la piel cumplen un rol importante en nuestro aroma personal, sin ellas, por ejemplo, nuestro sudor no tuviera olor alguno, sobre todo en las axilas. Entonces, como la microbiota epidérmica es diferente en cada persona, los mosquitos se verán atraídos por unos más que por otros.

Para corroborar esta hipótesis, un grupo de investigadores liderados por el Dr. Niels Verhulst de la Universidad de Wageningen (Holanda) han demostrado que la composición bacteriana de la piel juega un rol importante en la atracción de los mosquitos transmisores de la malaria (Anopheles gambiae). Los resultados aparecen publicados el 28 de Diciembre en PLoS ONE.

Verhulst y sus colaboradores reclutaron a 48 voluntarios entre 20 y 64 años. A cada uno se le dio una media de nylon que debían usar durante los tres días que durara el experimento. Además, se colectó sus emanaciones corporales dos veces por día. Luego se comparó el poder atractivo de las emanaciones de cada participante con respecto a un olor control y a partir de las medias de nylon se hizo el cultivo de los microorganismos que quedaron atrapados en ella.

Nueve de los 48 participantes demostraron ser muy atractivos para los mosquitos mientras que siete no lo fueron. Cuando hicieron los cultivos bacterianos y los relacionaron con sus respectivos voluntarios observaron que los participantes que eran menos atractivos para los mosquitos tenían una mayor diversidad pero menor abundancia microbiana que los que eran más atractivos.

Por otro lado, la abundancia relativa de especies del género Staphylococcus fue mayor en los participantes más atractivos, mientras que los del género Pseudomonas eran más abundantes en los participantes menos atractivos. Otros géneros como Brevibacterium y Corynebacterium no mostraron diferencias significativas entre unos y otros.

Debemos considerar que sólo una pequeña parte de las bacterias que habitan en nuestra piel pueden ser cultivados en el laboratorio. Sin embargo, Staphylococcus y Pseudomonas son las más abundantes de todas.

Según los resultados obtenidos, las personas que tienen una mayor abundancia de especies del género Staphylococcus emanan sustancias volátiles que son más atractivas para los mosquitos de la malaria, mientras que las personas con mayor proporción de especies del género Pseudomonas liberan sustancias menos atractivas para ellos. Conclusiones similares ya han sido obtenidas en dos estudios previos (aquí y aquí), demostrándose así la veracidad de la hipótesis.

La explicación podría ser que una mayor diversidad microbiana —especialmente de Pseudomonas—en la piel hace que las sustancias volátiles atractivas para los mosquitos que son producidas por los Staphylococcus sean transformadas en sustancias menos atractivas o repelentes para ellos. Otra explicación es que el “efecto AXE” de los Staphylococcus es enmascarado por las sustancias volátiles generadas por otras bacterias.

Estos resultados podrían ayudar a desarrollar cremas o jabones que reduzcan los niveles de Staphylococcus en la piel y así evitar la picadura por estos insectos. Los resultados podrían ser confirmados además en otras especies de mosquitos como Aedes aegypti quien es responsable de la transmisión del dengue y la fiebre amarilla.


Referencia:

ResearchBlogging.orgVerhulst, N., Qiu, Y., Beijleveld, H., Maliepaard, C., Knights, D., Schulz, S., Berg-Lyons, D., Lauber, C., Verduijn, W., Haasnoot, G., Mumm, R., Bouwmeester, H., Claas, F., Dicke, M., van Loon, J., Takken, W., Knight, R., & Smallegange, R. (2011). Composition of Human Skin Microbiota Affects Attractiveness to Malaria Mosquitoes PLoS ONE, 6 (12) DOI: 10.1371/journal.pone.0028991

Comentarios

Entradas más populares de este blog

Fusión y fisión de mitocondrias

Se cree que los procariotas aparecieron en el planeta hace unos 3,500 millones de años, mientras que los eucariotas lo hicieron hace unos 2,000 millones de años. Pero, si los procariotas llevan una ventaja de 1,500 millones de años a los eucariotas, ¿por qué ellos no son los organismos más complejos? La respuesta son las mitocondrias [Les recomiendo leer este artículo publicado en el blog]. Todos conocemos a las mitocondrias, si no las recuerdan, aquí se las presento. Tal vez la imagen que tenemos de ellas es que se encuentran diseminadas por toda la célula, aisladas unas de otras o, a lo mucho, reuniéndose en pequeños grupos. Sin embargo, esto no es así. En realidad, las mitocondrias son unos organelos muy dinámicos, que se encuentran fusionándose y dividiéndose constantemente, pero hasta ahora no se sabe a ciencia cierta que rol cumple este proceso. Axel Kowald de la Universidad Humboldt de Berlín y Tom B. L. Kirkwood de la Universidad de Newcastle han desarrollado una teoría

El mapa de las rutas metabólicas… Animado!

¿Qué es una ruta o vía metabólica? De manera sencilla, es el flujo de reacciones que sigue un determinado compuesto al ingresar a la célula, de esta manera, se transforma en una molécula más compleja (biosíntesis o anabolismo) o en una más sencilla (degradación o catabolismo). Por ejemplo: el pan tiene una gran variedad de compuestos químicos, pero el más abundante es el almidón —presente en la harina con el que es elaborado. El almidón es degradado por una serie de reacciones químicas gracias a unas enzimas llamadas amilasas, convirtiéndose en pequeñas unidades de glucosa. La glucosa ingresa a la célula y pasa por una serie de reacciones para llegar a formar dos moléculas de piruvato. Gráficamente lo podemos ver de la siguiente manera: Esta forma de graficarla se ve muy fría y poco llamativa, es más, parece ser muy difícil de aprenderla y no nos dice nada de como es el flujo de las otras moléculas que participan en la reacción, por ejemplo: el ADP y el NADH. Además, ésta sol

Crea tus propias rutas metabólicas con PathVisio

Alguna vez se han preguntado como hacen los científicos para hacer las rutas metabólicas que vemos en los libros o en los artículos científicos? Usan programas especializados en este tipo de diseños, es algo así como un AutoCad para biólogos. Aunque también lo puedes hacer en Power Point o en Corel Draw, pero estos programas no entenderían el contexto biológico de la ruta metabólica, las conexiones entre genes y proteínas. PathVisio es una herramienta que te permite crear rutas metabólicas con significado biológico para tus presentaciones o para publicarlos en un artículo o una monografía. Y si ya eres un investigador que usa técnicas de biología molecular avanzadas como el secuenciamiento genético y los microarreglos, puedes diseñar nuevas vías metabólicas, a partir de tus resultados y exportarlos a WikiPathways . También te permite descargar rutas metabólicas y base de datos de genes de organismos modelos muy usados en biología como son de Drosophila melanogaster , Saccharomy