Ir al contenido principal

Toxinas Bt modificadas para combatir a las plagas resistentes

BtToxin

Una de las estrategias más exitosas para el control de plagas es dotar a los cultivos de una toxina bacteriana llamada Bt —por la bacteria Bacillus thuringiensis. Esta toxina, que es insertada en las plantas mediante herramientas biotecnológicas, se expresa en las hojas y mata a todo insecto que se las come. Sin embargo, el uso excesivo de estos cultivares, la ausencia de zonas de refugio (zonas de plantas no transgénicas aledañas donde viven insectos susceptibles) y el uso de un sólo tipo de toxina Bt, genera la aparición de insectos resistentes que reducen la capacidad de protección del cultivar transgénico.

Las toxinas Bt son proteínas cristalinas codificadas por la familia de genes Cry1A. Si bien el mecanismo de acción no está del todo entendida, se cree que estas proteínas se solubilizan en el tracto digestivo de las orugas, luego interactúan con otras proteínas conocidas como las aminopeptidasas y, una vez juntas, se unen a las cadherinas —unas proteínas receptoras de membrana. Las cadherinas promueven la pérdida de un extremo de la toxina Bt llamado N-terminal y éstas empiezan a aglomerarse (oligomerización) hasta formar un poro por donde se pierden muchos iones y las células sufren un choque osmótico que finalmente les causa la muerte.

Al estudiar los insectos resistentes en el laboratorio, los científicos descubrieron que éstos presentaban ciertas mutaciones en los genes que codifican para las aminopeptidasas (AP) y las cadherinas sugiriendo que estas mutaciones evitan que las toxinas pierdan su extremo N-terminal y se oligomericen para formar los poros.

En base a esta hipótesis, un grupo de investigadores liderados por el biólogo Bruce Tabashnik de la Universidad de Arizona en colaboración con Alejandra Bravo y Mario Soberón de la Universidad Nacional Autónoma de México desarrollaron dos toxinas Bt modificadas, a las cuales se les quitó el extremo N-terminal para que puedan formar el poro sin la necesidad de interactuar con la cadherina. Contra todo pronóstico, la toxina modificada fue hasta 540 veces más letal en dos especies de insectos cuya resistencia no estaba asociada a la cadherina según reportaron hoy en Nature Biotechnology.

En los ensayos previos, probaron la toxina Bt modificada en dos insectos resistentes. A uno (Manduca sexta) lo volvieron resistente usando un ARN de interferencia (ARNi) que boqueaba la expresión de las cadherinas. El otro (Pectinophora gossypiella) era resistente porque perdió el gen de la cadherina naturalmente. Las larvas de estos dos insectos sucumbieron ante la toxina Bt modificada, demostrando así la validez de la hipótesis.

Luego, hicieron la misma prueba en 5 especies de plagas deferentes, cada una con un mecanismo de resistencia especial. Cuando analizaron los resultados,Tabashnik y sus colegas observaron con extrañeza que la toxina modificada era extremadamente eficiente en la larva de Plutella xylostella (Px), un insecto cuya resistencia no estaba asociada a la cadherina sino a una mutación en el sistema de transporte ABC. El mismo efecto se observó Ostrinia nubilalis (On) cuya resistencia era a causa de una mutación en la aminopeptidasa P.

bt-resistencia

En cambio, las especies Diatraea saccharalis (Ds) y Helicoverpa armigera (Ha), cuyas resistencias están asociadas a mutaciones en las cadherinas, no mostraron un efecto tan avasallador como en P. xylostella y O. nubilalis. Por otro lado, cuando se comparó el efecto de las toxinas normales (nativas) con las modificadas en insectos susceptibles, las normales fueron mucho más eficientes.

Estos resultados refutan la hipótesis de que las toxinas Bt modificadas son más efectivas que las toxinas Bt nativas si son administradas en insectos con mutaciones asociadas a la cadherina. Sin embargo, estas toxinas modificadas ofrecen una vía alternativa de toxicidad mucho más potente cuando se pretenda combatir plagas resistentes. Aún así, los investigadores no saben si esto ocurrirá en los campos de cultivo ya que todos los experimentos fueron hechos en laboratorios e invernaderos.

También faltaría investigar cómo interactuarán los dos tipos de toxinas, las nativas y las modificadas, si se usan simultáneamente en una misma planta, ¿lo harán de forma independiente, antagónica y sinérgica?. Sin embargo, es importante combinar distintos tipos de toxinas para reducir la presión selectiva sobre los insectos, para así reducir las probabilidades que aparezcan poblaciones resistentes.


Referencia:

ResearchBlogging.orgBruce E Tabashnik, Fangneng Huang, Mukti N Ghimire, B Rogers Leonard, Blair D Siegfried, Murugesan Rangasamy, Yajun Yang, Yidong Wu, Linda J Gahan, David G Heckel, Alejandra Bravo, & Mario Soberón (2011). Efficacy of genetically modified Bt toxins against insects with different genetic mechanisms of resistance Nature Biotechnology doi:10.1038/nbt.1988

Comentarios

Entradas más populares de este blog

¿Qué fue del estudio más grande sobre la seguridad de los transgénicos?

La tarde del 11 de noviembre de 2014, en un hotel londinense, se anuncia el lanzamiento de "Factor GMO", el experimento a largo plazo más extenso y detallado jamás realizado sobre un alimento transgénico y su plaguicida asociado.


Con un costo estimado de 25 millones de dólares, el estudio buscaba aportar —con una solidez sin precedentes— valiosa información para permitir a las autoridades reguladoras, los gobiernos y la población general, responder si es seguro el consumo de Organismos Genéticamente Modificados (OGM) o la exposición a su herbicida asociado en condiciones reales.

El experimento —que se llevaría a cabo en un laboratorio secreto en el territorio ruso para evitar cualquier injerencia externa— consistía en someter a 6.000 ratas de laboratorio a diversas dietas basadas en el maíz transgénico NK603 y su herbicida asociado (RoundUp), cuyo principio activo es el glifosato. Es similar al famoso estudio realizado Guilles-Eric Seralini, pero a mayor escala. Solo para re…

Cuando los antioxidantes promueven el cáncer

Hemos comentado muchas veces que las Especies Reactivas del Oxígeno (ROS, por sus siglas en inglés) están involucrados con el envejecimiento y con el desarrollo del cáncer. Esto se debe a que los ROS son altamente reactivos, por lo tanto, son capaces de dañar el ADN generando mutaciones. Por suerte existen los antioxidantes, quienes son los encargados de atrapar los ROS y mantenerlos en niveles que no generen daño alguno. Sin embargo, un grupo internacional de investigadores liderados por la Dra. Gina DeNicola del Instituto de Investigaciones de Cambridge revelaron que el factor de transcripción encargado de activar los genes que nos protegen de los ROS, también puede favorecer el desarrollo de ciertos tumores según un artículo publicado ayer en Nature.Normalmente, cuando las células son sometidas a un estrés fisiológico o sufren de algún tipo de daño genético, se activan una serie de genes y factores de transcripción que, de manera coordinada, regulan el funcionamiento de la célula, …

Pruebas rápidas y moleculares para COVID-19

Desde que se anunció la adquisición de más de un millón de "pruebas rápidas" para detectar personas con COVID-19, a fines de marzo, estuvieron en el ojo de la tormenta. Diversos científicos se manifestaron a favor o en contra de ellas, tanto en televisión como en redes sociales. El público general también tomó posición, más basada en simpatías políticas que en ciencia. Aquí les hago un resumen para entender de qué va todo esto.
Definamos conceptos "Pruebas moleculares" es un nombre genérico empleado para referirnos a los análisis basados en ácidos nucleicos, que puede ser de ADN o ARN. Por ejemplo, una prueba de paternidad es una prueba molecular. Se analiza el ADN del presunto padre y del hijo(a), para ver si comparten los mismos marcadores genéticos (fragmentos de ADN que son heredados). En el caso del coronavirus (SARS-CoV-2), la prueba molecular detecta marcadores genéticos en su ARN (otra molécula que también puede codificar la información genética).

La prueb…