Ir al contenido principal

Volviendo las células cancerosas luminosas para poder extraerlas

Cuando a una mujer se le diagnostica un cáncer de ovario en etapas avanzadas, el pronóstico no es muy bueno. La única forma de prolongar su esperanza de vida es removiendo los tumores mediante una cirugía (citorreducción) y sometiéndolas a una quimioterapia agresiva. Sin embargo, remover el tejido canceroso es una tarea complicada porque es muy difícil diferenciarlo del tejido sano. Ahora, un grupo de investigadores holandeses han usado una molécula fluorescente para evidenciar la presencia del tejido canceroso facilitando así su eliminación. El artículo aparece publicado hoy en Nature Medicine.

De todas las neoplasias que afectan a las mujeres, el cáncer epitelial de ovario es la causa más frecuente de muerte en EEUU y Europa. Este cáncer no muestra manifestaciones clínicas claras en los primeras etapas de desarrollo y la falta de pruebas discriminatorias hacen que el diagnóstico se de cuando ya es demasiado tarde. Por esta razón, sólo el 45% de las mujeres con cáncer de ovario llega a vivir más de 5 años, y este porcentaje se reduce considerablemente en etapas avanzadas.

En la actualidad, el tratamiento más efectivo es la cirugía citorreductiva (remoción del tejido canceroso) combinada con la quimioterapia. Sin embargo, es muy difícil remover todas las células cancerosas y muchas veces éstas pueden ser bastante resistentes a los agentes terapéuticos. Este es un factor importante a tomar en cuenta en el pronóstico de la paciente ya que las células cancerosas que queden pueden volver a crecer y proliferarse rápidamente.

Los cirujanos cuentan con la ayuda de los rayos X, la tomografía computarizada (CT), las imágenes de resonancia magnética (MRI) y el ultrasonido para visualizar los ovarios y remover los tumores, pero estas técnicas no permiten diferenciar claramente al tejido canceroso del tejido sano. Entonces, si se quiere mejorar la eficacia de la citorreducción se debe desarrollar algún tipo de estrategia que permita marcarlos selectivamente.

Un grupo de científicos holandeses liderados por el Dr. Gooitzen van Dam de la Universidad de Groningen, han usado moléculas fluorescentes por primera vez en humanos para evidenciar la presencia de células cancerosas en tiempo real, y han facilitado el proceso de la cirugía citorreductiva [ver el video].

En el año 2008, Kalli et al. demostraron que la expresión del receptor α de folato (FR-α) se incrementa entre un 90 a 95% en las células cancerosas del ovario, siendo un blanco ideal para marcadores fluorescentes y agentes terapéuticos. Este receptor es ampliamente usado en el radiodiagnóstico del cáncer de ovario, donde el folato (vitamina B9) es conjugado con el DTPA —una molécula que captura metales— para ser marcado con elementos metálicos radiactivos.

van Dam y sus colaboradores unieron una molécula fluorescente llamada fluoresceína al DTPA conjugado con el folato (Fig. a) y lo administraron vía intravenosa a diez pacientes de 60 años de las cuales cuatro presentaban tumores de ovario malignos. El folato viaja por el torrente sanguíneo hasta llegar a los ovarios donde es capturado por los FR-α, metiéndose al citoplasma de las células cancerosas y focalizando la fluorescencia sólo en los tejidos tumorales (Fig. b). Luego la fluoresceína es excitada con un láser a una longitud de onda 495nm, emitiendo fluorescencia verde a 520nm.

folate

Los cirujanos lograron diferenciar fácilmente al tejido canceroso de tejido sano y tuvieron una mayor facilidad para extirpar los pequeños tumores. La técnica demostró ser sumamente específica y tener una gran resolución, permitiendo localizar tejidos cancerosos tan pequeños como el punto final de esta oración.

Sin embargo, aún falta investigar que factores afectan la expresión del receptor de folato ya que uno de los pacientes con cáncer de ovario maligno no expresó este receptor. Por suerte, los investigadores demostraron que la expresión de este receptor no se ve afectada a causa de la quimioterapia. Además, lo más resaltante de este trabajo fue que el tejido canceroso fue eliminado con mayor facilidad, mejorando así la eficiencia de la citorreducción. Ahora quedaría esperar y ver si hay una mejora significativa en la esperanza y calidad de vida de los pacientes sometidos a esta prueba experimental.

Para que esta técnica sea más prometedora, deben identificarse moléculas que se expresen de manera específica en las células cancerosas de otros órganos como el útero, próstata, huesos, etc., para así desarrollar ligandos específicos que transporten la fluorescencia a las zonas afectadas. Por otro lado deben desarrollarse nuevas moléculas fluorescentes con longitudes de onda más largas —dentro del espectro infrarrojo cercano (>700nm)— para poder identificar tumores que se encuentran en tejidos más profundos y en órganos más internos.


Referencia:

ResearchBlogging.orgvan Dam, G., Themelis, G., Crane, L., Harlaar, N., Pleijhuis, R., Kelder, W., Sarantopoulos, A., de Jong, J., Arts, H., van der Zee, A., Bart, J., Low, P., & Ntziachristos, V. (2011). Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results Nature Medicine DOI: 10.1038/nm.2472

Comentarios

Entradas más populares de este blog

Pruebas rápidas y moleculares para COVID-19

Desde que se anunció la adquisición de más de un millón de "pruebas rápidas" para detectar personas con COVID-19, a fines de marzo, estuvieron en el ojo de la tormenta. Diversos científicos se manifestaron a favor o en contra de ellas, tanto en televisión como en redes sociales. El público general también tomó posición, más basada en simpatías políticas que en ciencia. Aquí les hago un resumen para entender de qué va todo esto.
Definamos conceptos "Pruebas moleculares" es un nombre genérico empleado para referirnos a los análisis basados en ácidos nucleicos, que puede ser de ADN o ARN. Por ejemplo, una prueba de paternidad es una prueba molecular. Se analiza el ADN del presunto padre y del hijo(a), para ver si comparten los mismos marcadores genéticos (fragmentos de ADN que son heredados). En el caso del coronavirus (SARS-CoV-2), la prueba molecular detecta marcadores genéticos en su ARN (otra molécula que también puede codificar la información genética).

La prueb…

¿Qué fue del estudio más grande sobre la seguridad de los transgénicos?

La tarde del 11 de noviembre de 2014, en un hotel londinense, se anuncia el lanzamiento de "Factor GMO", el experimento a largo plazo más extenso y detallado jamás realizado sobre un alimento transgénico y su plaguicida asociado.


Con un costo estimado de 25 millones de dólares, el estudio buscaba aportar —con una solidez sin precedentes— valiosa información para permitir a las autoridades reguladoras, los gobiernos y la población general, responder si es seguro el consumo de Organismos Genéticamente Modificados (OGM) o la exposición a su herbicida asociado en condiciones reales.

El experimento —que se llevaría a cabo en un laboratorio secreto en el territorio ruso para evitar cualquier injerencia externa— consistía en someter a 6.000 ratas de laboratorio a diversas dietas basadas en el maíz transgénico NK603 y su herbicida asociado (RoundUp), cuyo principio activo es el glifosato. Es similar al famoso estudio realizado Guilles-Eric Seralini, pero a mayor escala. Solo para re…

Cuando los antioxidantes promueven el cáncer

Hemos comentado muchas veces que las Especies Reactivas del Oxígeno (ROS, por sus siglas en inglés) están involucrados con el envejecimiento y con el desarrollo del cáncer. Esto se debe a que los ROS son altamente reactivos, por lo tanto, son capaces de dañar el ADN generando mutaciones. Por suerte existen los antioxidantes, quienes son los encargados de atrapar los ROS y mantenerlos en niveles que no generen daño alguno. Sin embargo, un grupo internacional de investigadores liderados por la Dra. Gina DeNicola del Instituto de Investigaciones de Cambridge revelaron que el factor de transcripción encargado de activar los genes que nos protegen de los ROS, también puede favorecer el desarrollo de ciertos tumores según un artículo publicado ayer en Nature.Normalmente, cuando las células son sometidas a un estrés fisiológico o sufren de algún tipo de daño genético, se activan una serie de genes y factores de transcripción que, de manera coordinada, regulan el funcionamiento de la célula, …