Ir al contenido principal

Se identifican las señales que activan el desarrollo de las conexiones nerviosas

Las dendritas son como los tentáculos de las neuronas, encargadas de establecer las conexiones con otras neuronas a fin recibir y transmitir las señales y estímulos desde los tejidos hacia el cerebro, y viceversa. Sin embargo, a pesar de su importancia para el desarrollo del sistema nervioso, se sabe muy poco o nada sobre los mecanismos fisiológicos y moleculares implicados en su formación. En un artículo publicado hoy en PLoS Biology, un grupo de investigadores del Instituto Cerebral de Queensland han revelado el rol que cumplen dos moléculas complementarias —LIN-44 y LIN-17— en el desarrollo de las dendritas.

dendritic_formation

Las dendritas son estructuras celulares complejas que se proyectan y ramifican desde la ‘cabeza’ una neurona hacia los ‘pies’ de otra. Su principal función es recibir los estímulos del ambiente o del entorno celular y transmitirlos a otras neuronas a través del axón. En otras palabras, son las encargadas de establecer las conexiones nerviosas (sinapsis). Sin embargo, debido a su complejidad y a la variedad de sus formas, los científicos no han podido entender de qué manera se desarrollan y qué factores están involucrados en ello.

Los primeros trabajos se enfocaron en los factores de desarrollo de los axones, los cuales son más conocidos. Estos factores demostraron tener un efecto opuesto en el desarrollo de las dendritas. Recientemente, se han encontrado unas moléculas altamente conservadas y que están muy relacionadas con el desarrollo del sistema nervioso, tales como: las moléculas señalizadoras Wnt y los receptores Frizzled.

En las ratas, las moléculas Wnt promueven la arborización de las dendritas, mientras que en la mosca de la fruta promueven el reordenamiento de las ramas de las dendritas. En los nemátodos, la proteína LIN-44 (miembro de la familia de las Wnt) regula la polaridad neuronal, la formación de las conexiones neuronales, la orientación y desarrollo de los terminales del axón; es por esta razón que es muy probable que también estén involucrados en las primeras etapas del desarrollo de las dendritas. El efecto de LIN-44 se da a través de su receptor LIN-17 (miembro de los receptores Frizzled).

Para estudiar el efecto de este ligando y su receptor en el desarrollo de las dendritas, la Dra. Leonie Kirszenblat y sus colaboradores del Instituto Cerebral de Queensland usaron las neuronas sensoriales de oxígeno conocidas como PQR. Estas neuronas se caracterizan por ser únicas en cada nemátodo, desarrollarse una vez que eclosionan de los huevos y se convierten en larvas y tener sólo un axón y una dendrita, facilitando así el trabajo.

Cuando los investigadores mutaron el gen lin-44, la dendrita de las neuronas PQR tuvieron serios problemas de desarrollo, siendo más pequeña de lo normal, muchas veces estaba ausente y en otras se extraviaba en su camino hacia el axón de otra neurona. Sin embargo, la LIN-44 no se expresaba propiamente en las neuronas PQR.

Kirszenblat et al. observaron que este factor se expresaba en las células de la cola de los nemátodos, cerca a la localización final de la dendrita. Esto sugería que LIN-44 actúa como una señal atractiva que dirige el crecimiento de la dendrita hacia esa región. Para demostrar esta hipótesis, los investigadores expresaron el LIN-44 en otras regiones diferentes del nemátodo (Fig. A, verde) y observaron que la dendrita siempre crecía hacia la dirección donde se encontraba el factor (Fig. B).

LIN-44

Los investigadores también demostraron que para un correcto desarrollo de la dendrita, LIN-44 debía expresarse durante el desarrollo embrionario. Cuando Kirszenblat y sus colegas extirparon las células de la cola de la larva del nemátodo (productoras de LIN-44), la dendrita de la neurona PQR no se vio afectada, mientras que cuando se inactivaba el gen lin-44 durante el desarrollo embrionario del nemátodo, la dendrita tenía el mismo problema de desarrollo que el observado en los mutantes. Por otro lado, cuando a las larvas mutantes se les reactivaba el gen lin-44 antes de que salgan del huevo, la dendrita se desarrollaba correctamente.

neuron_conectionFinalmente quedaba por analizar la forma cómo las neurona PQR detectaba la presencia de LIN-44. Los investigadores sabían que LIN-17 era la molécula receptora de LIN-44, así que la mutaron para ver que ocurría. Como era de esperarse, los nemátodos con el gen lin-17 mutante mostraban los mismos defectos que los mutantes para el gen lin-44. Además, Kirszenblat y sus colaboradores observaron que LIN-44 se expresaba en la membrana de la neurona PQR, lo que indicaría que la interacción de ligando LIN-44 y su receptor LIN-17, guía la formación de la dendrita. También encontraron que el factor EGL-20 (miembro de la familia de las Wnt) tenía un efecto similar a LIN-44.

Este trabajo es muy importante ya que nos permite conocer una parte del intrincado mecanismo de formación de las redes neuronales. Sus implicancias dentro de las neurociencias son muchas, sobre todo si se pretende restaurar aquellas conexiones nerviosas que fallan en las personas con problemas de vista, oído o habla, o en aquellas personas con lesiones en la columna vertebral como producto de un accidente, a través del uso de las células madre.


Referencia:

ResearchBlogging.org Kirszenblat, L., Pattabiraman, D., & Hilliard, M. (2011). LIN-44/Wnt Directs Dendrite Outgrowth through LIN-17/Frizzled in C. elegans Neurons PLoS Biology, 9 (9) DOI: 10.1371/journal.pbio.1001157

Comentarios

Entradas más populares de este blog

¿Qué fue del estudio más grande sobre la seguridad de los transgénicos?

La tarde del 11 de noviembre de 2014, en un hotel londinense, se anuncia el lanzamiento de "Factor GMO", el experimento a largo plazo más extenso y detallado jamás realizado sobre un alimento transgénico y su plaguicida asociado.


Con un costo estimado de 25 millones de dólares, el estudio buscaba aportar —con una solidez sin precedentes— valiosa información para permitir a las autoridades reguladoras, los gobiernos y la población general, responder si es seguro el consumo de Organismos Genéticamente Modificados (OGM) o la exposición a su herbicida asociado en condiciones reales.

El experimento —que se llevaría a cabo en un laboratorio secreto en el territorio ruso para evitar cualquier injerencia externa— consistía en someter a 6.000 ratas de laboratorio a diversas dietas basadas en el maíz transgénico NK603 y su herbicida asociado (RoundUp), cuyo principio activo es el glifosato. Es similar al famoso estudio realizado Guilles-Eric Seralini, pero a mayor escala. Solo para re…

¿Por qué tanto miedo al bromuro de etidio?

El bromuro de etidio (BrEt) es un agente químico muy usado en técnicas de biología molecular para teñir nuestros geles de agarosa y poder apreciar nuestras bandas de ADN; ya sean de los productos de extracción o de PCR. Existen dos formas de teñir los geles: i) remojando el gel de agarosa por 15 minutos en una bandeja con BrEt (0,5 mg/L) después de haber hecho la electroforesis o ii) añadiendo el BrEt directamente al gel al momento de prepararlo. Con la primera evitamos contaminar nuestra cámara de electroforesis con BrEt y con la segunda evitamos exponernos a salpicaduras y otros accidentes que pueden ocurrir al hacer la tinción en bandeja.


Se han dado cuenta que desde que entramos a un laboratorio de biología molecular nos tienen traumados con el BrEt: "¡Cuidado que te salpique!", "¡no lo huelas!", "¡usa tres guantes!", "¡no es por ese lado!", "¡si te cae en la piel te va a dar cáncer y te puedes morir!", entre otras cosas más.

Si b…

Se viene el etiquetado de los transgénicos…

Al parecer todo ya está listo para el etiquetado de los productos de origen transgénico ya que está próximo a ser aprobado el Código de Consumo que tiene un artículo denominado “Información sobre los productos", sin embargo hay bastante desconocimiento de lo que significa esto, o más aún, lo que es un transgénico.De manera sencilla un transgénico es un organismo vivo (animal, planta, bacteria, etc.) a la cual se le ha introducido un determinado gen correspondiente a otra especie diferente. Por ejemplo. Un maíz transgénico será un maíz al cual se le ha introducido un gen de una bacteria para que pueda expresar una proteína capaz de matar al insecto que se coma sus hojas, de esta manera, el maíz se vuelve resistente a los insectos o plagas. Existe una gran variedad de plantas transgénicas. Por ejemplo, casi toda la soya del mundo es transgénica, así que los derivados de la soya transgénica serán los productos transgénicos, los cuales tendrán que ser etiquetados. Pero, casi todos lo…