Ir al contenido principal

Jugadores de Foldit resuelven la estructura de una proteína viral

[Antes de leer esta entrada, pueden leer acerca de Foldit en el artículo que escribí en el blog el año pasado]

En tan solo tres semanas, los jugadores de Foldit han resuelto la estructura tridimensional de una enzima de un retrovirus llamada proteasa, cuya configuración ha sido esquiva a los científicos por más de una década. Según el artículo publicado hoy en Nature Structural & Molecular Biology, este logro provee una excelente oportunidad para diseñar fármacos más eficientes para tratar diferentes enfermedades virales como el VIH.

foldit

Las proteínas están formadas por una determinada secuencia de aminoácidos. Cada aminoácido tiene propiedades químicas diferentes que influyen en la forma y función de la proteína. Como simple analogía, imagínense alambre metálico que adquiere una determinada forma en función a la fuerza que le apliques. En una proteína, las fuerzas son de atracción o repulsión en base a la naturaleza química de cada uno de los 20 aminoácidos diferentes que pueden conformarla.

Para determinar la estructura de una proteína no basta con conocer su secuencia de aminoácidos, ya que las formas como éstos pueden interactuar son infinitas. Los científicos deben purificarlas, cristalizarlas y someterlas a los rayos X o a la resonancia magnética (RMN) para analizar la forma como dispersan o absorben la radiación electromagnética, y mediante programas de computación, analizar los datos para obtener la estructura final. Este proceso es sumamente largo y costoso, y muchas veces las proteínas no pueden purificarse o cristalizarse ya que se desnaturalizan (pierden su forma) en el proceso.

Foldit es un juego de computadora en línea creado por investigadores de la Universidad de Washington, donde los jugadores manipulan las estructuras de proteínas cuyas configuraciones espaciales aún son desconocidas. Usando una serie de herramientas de modelamiento dispuestas en una interfaz gráfica amigable —algo así como el AutoCAD® que usan los ingenieros—, los jugadores doblan, giran, abren y cierran las cadenas de aminoácidos a fin de encontrar la disposición más estable.

En Foldit, los jugadores no parten desde cero, o sea, no parten desde una cadena estirada de aminoácidos, sino parten desde una estructura predicha por una herramienta bioinformática llamada Rosetta. Este programa usa el siguiente algoritmo para encontrar la mejor estructura proteica: i) comienza con una cadena de aminoácidos completamente estirada; ii) mueve una parte de la cadena para obtener una nueva forma; iii) calcula la energía libre de la nueva forma; iv) acepta o rechaza el cambio de energía obtenido (diferencia entre la energía antes y después del movimiento); y v) repite los pasos ii, iii y iv hasta obtener una estructura final predicha. A todos estos pasos se llama “trayectoria” y el programa analiza aquella estructura que tuvo la trayectoria con la cantidad de energía más baja. Finalmente, se hace los ajustes de cada estructura mediante ligeros cambios en las interacciones químicas. Sin embargo, no siempre se obtiene la misma forma de baja energía porque las posibilidades son infinitas.

Debido a la cantidad de cálculos que hace Rosetta, los desarrolladores usan los recursos de las computadoras de personas que voluntariamente las ofrecen al proyecto a través de una simple aplicación llamada Rosetta@home. Mientras no usas tu computadora, Rosetta@home entra en actividad y ejecuta el algoritmo el cual tu puedes observarlo, en tiempo real, como protector de pantalla.

Entonces, a partir de la estructura proteica predicha por Rosetta, lo jugadores de Foldit empiezan a realizar pequeños movimientos a fin de encontrar las formas con menores cantidades de energía libre (termodinámicamente más estables). Además, al ser un juego multijugador, existe una participación colaborativa que acelera el proceso, ya que los jugadores se encuentran agrupados en “clanes” que trabajan de manera conjunta a fin de obtener más puntos y subir en el ranking. Aunque no lo crean, la competencia es muy fuerte ya que, si bien puede ser tomado como un prejuicio, los científicos y la gente que gusta de la ciencia son bastante geeks.

Para el presente trabajo, el equipo del Dr. Firas Khatib puso un puzle a dos de los grupos más renqueados de Foldit —Contenders y Void Crushers. El puzle era la proteasa retroviral del Virus Mason-Pfizer del mono (M-PMV), el cual causa el SIDA en los simios. Estas enzimas cumplen un rol importante en la maduración y proliferación de los virus como el VIH y son usados como blancos de los retrovirales modernos, así que saber su estructura molecular precisa sería de gran ayuda para diseñar fármacos más específicos y eficientes.

Los científicos han tratado de encontrar la forma de esta proteasa usando el reemplazamiento molecular (MR) por más de una década. Esta técnica se basa en determinar la estructura de una proteína comparándola con otras proteína similares con estructuras ya resueltas o a partir de otras formas cristalinas de la misma proteína mucho más fáciles de obtener.

Durante las tres semanas que duró la competencia, los jugadores de Foldit lograron obtener la estructura de la proteasa —partiendo desde los modelos parciales obtenidos mediante RMN—, la cual fue bastante aproximada a la versión original determinada posteriormente mediante cristalografía de rayos X. Además, los modelos obtenidos por los jugadores (Fig. a) fue mejor que los obtenidos por la predicción de Rosetta (Fig. b, c y d).

foldit-1Las estructuras originales fueron determinadas posteriormente y se presentan de color azul en las cuatro figuras. a. Comparación con la estructura predicha por el jugador de Foldit (verde). b. Comparación con la estructura inicial predicha por Rosetta (amarillo). c y d. Comparación con las estructuras optimizadas predichas por Rosetta (rojo y celeste).

Para que esta proteasa sea funcional, debe estar formada por dos de estas proteínas conocidas como monómeros. Entonces, la importancia de este trabajo es que al conocer la estructura más precisa de la proteína se pueden diseñar fármacos que actúen a nivel de su superficie y eviten que los monómeros se unan par formar la proteasa funcional. De esta manera, el virus perderá su capacidad de proliferación y la infección puede ser controlada.

Por otro lado, predecir las estructuras usando Foldit y Rosetta@home reduce considerablemente los costos económicos y laborales que acarrea la purificación y cristalización de proteínas, a través de la interacción de los videojuegos y la investigación científica.


Referencia:

ResearchBlogging.orgKhatib, F., DiMaio, F., Cooper, S., Kazmierczyk, M., Gilski, M., Krzywda, S., Zabranska, H., Pichova, I., Thompson, J., Popović, Z., Jaskolski, M., & Baker, D. (2011). Crystal structure of a monomeric retroviral protease solved by protein folding game players Nature Structural & Molecular Biology DOI: 10.1038/nsmb.2119

Comentarios

Entradas más populares de este blog

¿Por qué tanto miedo al bromuro de etidio?

El bromuro de etidio (BrEt) es un agente químico muy usado en técnicas de biología molecular para teñir nuestros geles de agarosa y poder apreciar nuestras bandas de ADN; ya sean de los productos de extracción o de PCR. Existen dos formas de teñir los geles: i) remojando el gel de agarosa por 15 minutos en una bandeja con BrEt (0,5 mg/L) después de haber hecho la electroforesis o ii) añadiendo el BrEt directamente al gel al momento de prepararlo. Con la primera evitamos contaminar nuestra cámara de electroforesis con BrEt y con la segunda evitamos exponernos a salpicaduras y otros accidentes que pueden ocurrir al hacer la tinción en bandeja.


Se han dado cuenta que desde que entramos a un laboratorio de biología molecular nos tienen traumados con el BrEt: "¡Cuidado que te salpique!", "¡no lo huelas!", "¡usa tres guantes!", "¡no es por ese lado!", "¡si te cae en la piel te va a dar cáncer y te puedes morir!", entre otras cosas más.

Si b…

TOP 10: Las peores cosas de trabajar en un laboratorio

Encontré este interesante artículo publicado en Science Careers. La verdad es que me ha gustado mucho —me sentí identificado con varios aspectos— tanto que me tomé la libertad de traducirlo y hacerle algunas modificaciones, en base a mi experiencia personal, para ustedes.Tus amigos no-científicos no entienden lo que haces.

Cuando te reúnes con tus amigos del colegio o del barrio y empiezan a hablar acerca de sus trabajos, qué es lo que hacen y cuáles han sido los logros más recientes, ellos fácilmente lo pueden resumir en un “he construido una casa/edificio/puente/carretera”, o “he dejado satisfecho a un cliente” (que feo sonó eso xD), o tu amigo abogado dirá “he sacado de la cárcel a un asaltante confeso y encima he logrado que lo indemnicen”, pero cuando te toca a ti ¿qué dirás? “Bueno he curado… uhm, la verdad no he curado, las ratas viven un poco más pero no las he curado, así que he descubierto… no, esa palabra es muy fuerte. La verdad he probado… este… tampoco, las pruebas están …

¿Qué fue del estudio más grande sobre la seguridad de los transgénicos?

La tarde del 11 de noviembre de 2014, en un hotel londinense, se anuncia el lanzamiento de "Factor GMO", el experimento a largo plazo más extenso y detallado jamás realizado sobre un alimento transgénico y su plaguicida asociado.


Con un costo estimado de 25 millones de dólares, el estudio buscaba aportar —con una solidez sin precedentes— valiosa información para permitir a las autoridades reguladoras, los gobiernos y la población general, responder si es seguro el consumo de Organismos Genéticamente Modificados (OGM) o la exposición a su herbicida asociado en condiciones reales.

El experimento —que se llevaría a cabo en un laboratorio secreto en el territorio ruso para evitar cualquier injerencia externa— consistía en someter a 6.000 ratas de laboratorio a diversas dietas basadas en el maíz transgénico NK603 y su herbicida asociado (RoundUp), cuyo principio activo es el glifosato. Es similar al famoso estudio realizado Guilles-Eric Seralini, pero a mayor escala. Solo para re…