Ir al contenido principal

Un futuro incierto en el tratamiento del Síndrome de Rett

El Síndrome de Rett es una enfermedad neurológica congénita que afecta a una de cada 10,000 personas en el mundo, principalmente a mujeres. Esta enfermedad se caracteriza por que la persona presenta comportamientos autistas, anormalidades cognitivas y motoras, y un crecimiento y desarrollo lento del cerebro durante la infancia.

Lo síntomas de este síndrome empiezan a notarse desde los primeros años de vida, principalmente entre los dos y cuatro años. En la mayoría de los casos, la enfermedad se debe a mutaciones en el gen Mecp2, el cual codifica para un potente regulador epigenético encargado de metilar ciertos genes. Las metilaciones funcionan a manera de interruptores genéticos: cuando un gen es metilado, es inactivado. Así que en el Síndrome de Rett, muchos de los genes envueltos en el desarrollo del sistema nervioso no son ‘apagados’ cuando deberían serlo, generando graves problemas neurológicos.

Entonces, ¿si tuviéramos la capacidad de reactivar la función del gen Mecp2, se podría revertir el desarrollo de la enfermedad?. En el año 2007, Guy et al. reactivaron el gen Mecp2 en ratones carentes de él y observaron que los síntomas neurológicos podían ser revertidos. Pero, lo que no se sabía era si bastaba con reactivar el gen en durante los primeros días de vida del ratón para prevenir el desarrollo de la enfermedad una vez lleguen a ser adultos.

En un artículo publicado en el último número de Science, el estudiante de doctorado Christopher McGraw y colaboradores del Instituto de Investigaciones Neurológicas Jan y Dan Duncan (Houston, EEUU) usaron ratones modificados genéticamente para suprimir la expresión del gen Mecp2 cuando se les administraba una dosis de tamoxifen. Estos ratones —a los cuales llamaron AKO— servirían para ver si la inactivación del gen en las etapas adultas tendrían algún efecto sobre el desarrollo de la enfermedad.

Cuando los ratones estaban ya completamente maduros —a los 60 días de edad— McGraw et al. inactivaron el gen Mecp2. A las 10 semanas de haber sido inactivado el gen, los ratones AKO presentaban los síntomas típicos de la enfermedad, además, su comportamiento y su capacidad de aprendizaje fue similar a la de los ratones que no tenían el gen Mecp2 (ratones MECP2-KO). Con esto demostraron que existen ciertos genes que son regulados por la MECP2 cuando el sistema nervioso ya está maduro.

De los diez genes que se veían afectados en los ratones MECP2-KO, la expresión de cuatro se veían significativamente alterados, lo que indicaría que estos genes tienen una función importante en el buen funcionamiento y mantenimiento del sistema nervioso adulto. Por otro lado, tanto los ratones AKO como los MECP2-KO murieron prematuramente.

Lamentablemente, estos resultados no son muy alentadores para la búsqueda de un tratamiento genético efectivo para el síndrome de Rett. Al parecer, no basta sólo con que el regulador MECP2 esté activo durante el desarrollo del sistema nervioso, ya que los ratones AKO demostraron que MECP2 también en completamente funcional en el sistema nervioso adulto, lo que indicaría que si se desarrolla un tratamiento basado en la reactivación del gen Mecp2, éste debería ser administrado de por vida, generando una dependencia y aumentando significativamente los costos.


Referencia:

ResearchBlogging.orgMcGraw, C., Samaco, R., & Zoghbi, H. (2011). Adult Neural Function Requires MeCP2 Science, 333 (6039), 186-186 DOI: 10.1126/science.1206593

Comentarios

Entradas más populares de este blog

Pruebas rápidas y moleculares para COVID-19

Desde que se anunció la adquisición de más de un millón de "pruebas rápidas" para detectar personas con COVID-19, a fines de marzo, estuvieron en el ojo de la tormenta. Diversos científicos se manifestaron a favor o en contra de ellas, tanto en televisión como en redes sociales. El público general también tomó posición, más basada en simpatías políticas que en ciencia. Aquí les hago un resumen para entender de qué va todo esto.
Definamos conceptos "Pruebas moleculares" es un nombre genérico empleado para referirnos a los análisis basados en ácidos nucleicos, que puede ser de ADN o ARN. Por ejemplo, una prueba de paternidad es una prueba molecular. Se analiza el ADN del presunto padre y del hijo(a), para ver si comparten los mismos marcadores genéticos (fragmentos de ADN que son heredados). En el caso del coronavirus (SARS-CoV-2), la prueba molecular detecta marcadores genéticos en su ARN (otra molécula que también puede codificar la información genética).

La prueb…

¿Qué fue del estudio más grande sobre la seguridad de los transgénicos?

La tarde del 11 de noviembre de 2014, en un hotel londinense, se anuncia el lanzamiento de "Factor GMO", el experimento a largo plazo más extenso y detallado jamás realizado sobre un alimento transgénico y su plaguicida asociado.


Con un costo estimado de 25 millones de dólares, el estudio buscaba aportar —con una solidez sin precedentes— valiosa información para permitir a las autoridades reguladoras, los gobiernos y la población general, responder si es seguro el consumo de Organismos Genéticamente Modificados (OGM) o la exposición a su herbicida asociado en condiciones reales.

El experimento —que se llevaría a cabo en un laboratorio secreto en el territorio ruso para evitar cualquier injerencia externa— consistía en someter a 6.000 ratas de laboratorio a diversas dietas basadas en el maíz transgénico NK603 y su herbicida asociado (RoundUp), cuyo principio activo es el glifosato. Es similar al famoso estudio realizado Guilles-Eric Seralini, pero a mayor escala. Solo para re…

Cuando los antioxidantes promueven el cáncer

Hemos comentado muchas veces que las Especies Reactivas del Oxígeno (ROS, por sus siglas en inglés) están involucrados con el envejecimiento y con el desarrollo del cáncer. Esto se debe a que los ROS son altamente reactivos, por lo tanto, son capaces de dañar el ADN generando mutaciones. Por suerte existen los antioxidantes, quienes son los encargados de atrapar los ROS y mantenerlos en niveles que no generen daño alguno. Sin embargo, un grupo internacional de investigadores liderados por la Dra. Gina DeNicola del Instituto de Investigaciones de Cambridge revelaron que el factor de transcripción encargado de activar los genes que nos protegen de los ROS, también puede favorecer el desarrollo de ciertos tumores según un artículo publicado ayer en Nature.Normalmente, cuando las células son sometidas a un estrés fisiológico o sufren de algún tipo de daño genético, se activan una serie de genes y factores de transcripción que, de manera coordinada, regulan el funcionamiento de la célula, …