Ir al contenido principal

Los osos polares modernos descienden de los osos pardos irlandeses

Los osos polares (Ursus maritimus) es tal vez la especie más susceptible al cambio climático debido al rápido deterioro de sus hábitats naturales —el Ártico. Con el fin de desarrollar estrategias de conservación para esta especie, el cual involucra un programa de repoblamiento, un grupo internacional de científicos liderados por el Dr. Ceiridwen J. Edwards de la Universidad de Dublin (Irlanda) han descubierto que el ancestro maternal de todos los osos polares modernos es un oso pardo irlandés (ahora extinto) según un artículo publicado hoy en Current Biology.

polarbear7

Si bien los osos polares y los osos pardos actuales son sumamente diferentes en términos del tamaño corporal, color del pelaje, tipo de piel, estructura de los dientes, comportamiento, y muchas otras características más; se ha observado que estas dos especies se han cruzado y mezclado reiteradas veces durante los últimos 100,000 años, es más, actualmente se han reportado casos de híbridos naturales en Canadá y en algunos zoológicos, generando descendientes fértiles, lo que indicaría que estas dos especies tienen una historia evolutiva bastante cercana.

Estudios previos ya habían demostrado que los osos pardos han contribuido con material genético mitocondrial —los cuales se heredan exclusivamente por línea materna— a los osos polares, pero hasta ahora no se sabe cuándo y cómo ocurrió eso, aunque ciertos investigadores sugieren que el ancestro maternal de los osos polares modernos vivió en Alaska hace tan sólo 14,000 años.

Para dar una respuesta definitiva a esta interrogante, Edwards et al. recolectaron el material genético de 242 osos de 14 diferentes localidades. Dentro del material colectado se encontraban muestras de fósiles de osos polares que vivieron hace 8,000 años, así como también, muestras de osos polares modernos. Además lograron colectar muestras de 23 fósiles de osos pardos irlandeses encontrados en distintas cuevas de la isla para obtener una historia evolutiva de los últimos 120,000 años y determinar en que momento se fijó el ADN mitocondrial de los oso polares modernos.

Al comparar las secuencias genéticas, Edwards et al. encontraron que el ADN mitocondrial de los osos polares modernos se fijó en la población hace unos 50,000 años, justo en antes —o durante— el pico máximo de la última glaciación. Lo más resaltante de este descubrimiento fue que el los osos polares modernos compartían gran parte de su ADN mitocondrial con el de osos pardos irlandeses, los cuales se extinguieron hace unos 9,000 años, sugiriendo que estas dos poblaciones de osos —los polares ancestrales y los irlandeses— estuvieron en contacto durante mucho tiempo antes de la desaparición de estos últimos.

Los investigadores sugieren que fueron los cambios climáticos —glaciaciones y calentamientos globlales— los que favorecieron la hibridización entre estas dos especies de osos. Por ejemplo, durante los periodos cálidos, los hielos se derretían y los niveles del mar aumentaban, forzando a los osos polares a permanecer más tiempo en tierra firme buscando alimento. Es en este momento donde se topaban con poblaciones de osos pardos que habitaban la isla irlandesa y se mezclaban. Nuevamente, cuando regresaba los periodos fríos, los osos polares regresaban a los casquete polares. Durante las épocas frías, los osos pardos se acercaban a los territorios de los osos polares y las poblaciones se mezclaban. Esto ocurrió reiteradas veces en los últimos 120,000 años.

Por esta razón, los biólogos conservacionistas están evaluando la posibilidad de conservar, no sólo a los osos polares, sino a los híbridos con los osos pardos, ya que según la historia evolutiva de los osos, los híbridos fueron importantes para el mantenimiento de la especie. Sin embargo, ahora quedaría por analizar el genoma nuclear, el cual pasa a los descendientes tanto por línea materna como paterna, para determinar en que medida afecta la hibridización a la diversidad genética, algo fundamental cuando se plantean estrategias de conservación.


Referencias:

Edwards, CJ; et al. Ancient Hybridization and an Irish Origin for the Modern Polar Bear Matriline. Current Biology. doi: 10.1016/j.cub.2011.05.058 (2011).

Vía | PhysOrg, Science NOW & WiredScience.

Comentarios

Entradas más populares de este blog

Fusión y fisión de mitocondrias

Se cree que los procariotas aparecieron en el planeta hace unos 3,500 millones de años, mientras que los eucariotas lo hicieron hace unos 2,000 millones de años. Pero, si los procariotas llevan una ventaja de 1,500 millones de años a los eucariotas, ¿por qué ellos no son los organismos más complejos? La respuesta son las mitocondrias [Les recomiendo leer este artículo publicado en el blog]. Todos conocemos a las mitocondrias, si no las recuerdan, aquí se las presento. Tal vez la imagen que tenemos de ellas es que se encuentran diseminadas por toda la célula, aisladas unas de otras o, a lo mucho, reuniéndose en pequeños grupos. Sin embargo, esto no es así. En realidad, las mitocondrias son unos organelos muy dinámicos, que se encuentran fusionándose y dividiéndose constantemente, pero hasta ahora no se sabe a ciencia cierta que rol cumple este proceso. Axel Kowald de la Universidad Humboldt de Berlín y Tom B. L. Kirkwood de la Universidad de Newcastle han desarrollado una teoría

El mapa de las rutas metabólicas… Animado!

¿Qué es una ruta o vía metabólica? De manera sencilla, es el flujo de reacciones que sigue un determinado compuesto al ingresar a la célula, de esta manera, se transforma en una molécula más compleja (biosíntesis o anabolismo) o en una más sencilla (degradación o catabolismo). Por ejemplo: el pan tiene una gran variedad de compuestos químicos, pero el más abundante es el almidón —presente en la harina con el que es elaborado. El almidón es degradado por una serie de reacciones químicas gracias a unas enzimas llamadas amilasas, convirtiéndose en pequeñas unidades de glucosa. La glucosa ingresa a la célula y pasa por una serie de reacciones para llegar a formar dos moléculas de piruvato. Gráficamente lo podemos ver de la siguiente manera: Esta forma de graficarla se ve muy fría y poco llamativa, es más, parece ser muy difícil de aprenderla y no nos dice nada de como es el flujo de las otras moléculas que participan en la reacción, por ejemplo: el ADP y el NADH. Además, ésta sol

¿Por qué tanto miedo al bromuro de etidio?

El bromuro de etidio (BrEt) es un agente químico muy usado en técnicas de biología molecular para teñir nuestros geles de agarosa y poder apreciar nuestras bandas de ADN; ya sean de los productos de extracción o de PCR. Existen dos formas de teñir los geles: i) remojando el gel de agarosa por 15 minutos en una bandeja con BrEt (0,5 mg/L) después de haber hecho la electroforesis o ii) añadiendo el BrEt directamente al gel al momento de prepararlo. Con la primera evitamos contaminar nuestra cámara de electroforesis con BrEt y con la segunda evitamos exponernos a salpicaduras y otros accidentes que pueden ocurrir al hacer la tinción en bandeja. Se han dado cuenta que desde que entramos a un laboratorio de biología molecular nos tienen traumados con el BrEt: "¡Cuidado que te salpique!", "¡no lo huelas!", "¡usa tres guantes!", "¡no es por ese lado!", "¡si te cae en la piel te va a dar cáncer y te puedes morir!", entre otras cosas más.