Ir al contenido principal

Dos nanopartículas son mejor que una si de eliminar tumores se trata

Durante los últimos años, la medicina se ha estado valiendo de las bondades de la nanotecnología para el tratamiento de muchas enfermedades, principalmente, el cáncer. Muchos laboratorios del mundo están desarrollando nanopartículas capaces de encapsular diferentes agentes terapéuticos, transportarlos por nuestro cuerpo hacia el tejido dañado y depositar ahí su carga, para mejorar así la precisión del tratamiento. Sin embargo, a pesar de los avances, sólo el 1% de los fármacos transportados por nanopartículas logra alcanzar su objetivo.

Ahora, un grupo de científicos liderados por el ingeniero biomédico Geoffrey von Maltzahn del Instituto Tecnológico de Massachusetts (MIT), han desarrollado una novedosa estrategia para mejorar la eficacia en la distribución de los fármacos hacia los tumores que consiste en el uso de dos nanopartículas y el sistema de amplificación de señales bioquímicas de los sistemas biológicos según un artículo publicado hoy en Nature Materials.

Un tratamiento es más efectivo cuando el agente terapéutico cumple su función en el tejido específico sin llegar a comprometer los tejidos sanos. Para ello se debe identificar aquellas moléculas que solamente se expresan en la superficie de las células de los tejidos dañados (moléculas receptoras), para luego usar otras moléculas que sean capaces de reconocer estos receptores y así poder transportar y distribuir el agente terapéutico de manera precisa. Los ejemplos más claros de este reconocimiento específico es el que se da entre un anticuerpo y su respectivo antígeno o entre una molécula señalizadora y su respectivo receptor.

Pero muchas veces, estas moléculas señalizadoras se encuentran en muy bajas concentraciones, lo cual dificulta el transporte y la entrega del fármaco. Por suerte, nuestro organismo cuenta con un sistema de amplificación de señales natural como, por ejemplo, el sistema de coagulación. Un coágulo se forma cuando una herida activa una serie de reacciones químicas que llevan a la formación de una compleja red tridimensional de grandes cantidades de fibrina.

Lo que hicieron von Maltzahn et al. fue activar este sistema de coagulación en tumores mediante el uso de una nanopartícula de oro cubierta de una molécula emisora de radiación infrarroja. Las nanopartículas ingresan al tumor a través de los pequeños poros presentes en los vasos sanguíneos que suelen recubrirlo. Luego, el calor generado por la radiación infrarroja empieza a dañar localmente el tejido haciendo creer al cuerpo que se ha producido una herida, activando así el sistema de coagulación.

Como resultado de la activación del sistema de coagulación, el Factor XIII —enzima encargada de la formación de los enlaces cruzados de las moléculas de fibrina— se expresa en la región dañada. En este punto entra en acción una segunda nanopartícula embebida con fragmentos de proteínas usadas como sustrato por el Factor XIII. Esta segunda nanopartícula es también la que porta consigo al agente terapéutico y será atraída hacia el tumor a medida que se va dando el proceso de coagulación en él. El Factor XIII y la fibrina generada durante el proceso de coagulación produce muchos sitios de reconocimiento adicionales para la nanopartícula transportadora.

Según los resultados obtenidos en las pruebas realizadas en ratones, esta estrategia aumentó en 40 veces la cantidad de doxorubicina (droga utilizada en el tratamiento de diversos tipos de cáncer) depositada en los tumores.

Sin embargo, el principal obstáculo de esta novedosa estrategia es que los pacientes con cáncer son susceptibles a formar coágulos en diferentes partes del cuerpo, provocando que el agente terapéutico sea depositado en regiones donde no son requeridas. Aún así, esta estrategia tiene un futuro bastante prometedor ya que existen una gran cantidad de vías de señalización dentro de nuestro organismo, muchas de ellas exclusivas sólo de las células cancerosas.


Referencia:

von Maltzahn, G; et al. Nanoparticles that communicate in vivo to amplify tumour targeting. Nature Materials [Advance Online Publication] doi:10.1038/nmat3049 (2011).

Vía | Nature News.

Comentarios

Publicar un comentario

Se respetuoso con tus comentarios y críticas. Cualquier comentario ofensivo será eliminado.

Entradas más populares de este blog

Fusión y fisión de mitocondrias

Se cree que los procariotas aparecieron en el planeta hace unos 3,500 millones de años, mientras que los eucariotas lo hicieron hace unos 2,000 millones de años. Pero, si los procariotas llevan una ventaja de 1,500 millones de años a los eucariotas, ¿por qué ellos no son los organismos más complejos? La respuesta son las mitocondrias [Les recomiendo leer este artículo publicado en el blog]. Todos conocemos a las mitocondrias, si no las recuerdan, aquí se las presento. Tal vez la imagen que tenemos de ellas es que se encuentran diseminadas por toda la célula, aisladas unas de otras o, a lo mucho, reuniéndose en pequeños grupos. Sin embargo, esto no es así. En realidad, las mitocondrias son unos organelos muy dinámicos, que se encuentran fusionándose y dividiéndose constantemente, pero hasta ahora no se sabe a ciencia cierta que rol cumple este proceso. Axel Kowald de la Universidad Humboldt de Berlín y Tom B. L. Kirkwood de la Universidad de Newcastle han desarrollado una teoría

Algodón rosa

La mayoría de las personas dan por hecho que el algodón es blanco. Lo vemos así en hisopos, rollos y torundas. Sin embargo, existen de diversos colores, especialmente, en Perú. Marrón, crema, pardo, verde, son algunos de ellos. Como esos algodones no se pueden teñir, la industria textil optó por las variedades de fibra blanca. Muestras de algodón de color. Fuente: Ing. Patricia Ocampo. En la actualidad hay una mayor concienciación por los impactos ambientales que generan los productos que consumimos. La ropa es una de ellas. Los tintes empleados generan contaminación de los cuerpos de agua. En ese contexto, los algodones pigmentados adquieren mayor relevancia, aunque la variedad de colores existentes es muy limitada. La naturaleza tiene infinidad de colores. Un claro ejemplo son las flores: amarillas, azules, rosadas, violetas, rojas y más. Cada pigmento es producido por diversas enzimas que catalizan reacciones químicas para que una molécula se convierta en otra. Por ejemplo, la tiros

Ozono por el culo

La insuflación rectal de ozono , que en términos coloquiales es ozono por el culo  ( OxC , de forma abreviada), es una forma de ozonoterapia.  Según sus promotores , esta terapia "es muy potente en cuanto a la eliminación de gérmenes intestinales como virus, bacterias, protozoos, hongos, etc ". Incluso pidieron a la Organización Mundial de la Salud que lo usaran para el tratamiento del Ébola.  Según Ozonomédica , la ozonoterapia, en general, "es una eficaz alternativa en el tratamiento y control de muchas patologías y enfermedades crónicas" que incluso "puede retrasar o evitar la aparición de diabetes, cáncer, artritis, artrosis, entre otras". Paciente recibiendo OxC. Fuente: Ozonoterapia . Sin embargo,  de acuerdo con la Administración de Alimentos y Medicamentos de los Estados Unidos ( FDA ), el ozono es un gas tóxico sin alguna aplicación médica conocida . Si bien es cierto, el ozono nos protege de la peligrosa radiación ultravi