Ir al contenido principal

Expansión del código genético: cuando dos aminoácidos se vuelven uno

La clásica visión que tenemos del código genético es que con los 64 codones disponibles —combinación de tres nucleótidos o tripletes— se pueden codificar 20 aminoácidos y 3 terminadores o STOP (que no codifican ningún aminoácido y terminan la traducción de la proteína). En 1986 hubo todo una excitación en el mundo de la bioquímica tras el descubrimiento de genes que codifican para las selenoproteínas que, como su nombre lo dice, tienen átomos de selenio en su estructura. Este átomo de selenio es sumamente reactivo y generalmente se presenta en los sitios activos de ciertas enzimas como la glutatión peroxidasa y la formato deshidrogensa.

La presencia del selenio en estas selenoproteínas se debe a un inusual aminoácido llamado selenocisteína. Este aminoácido es codificado por un codón UGA, el cual es un codón de término o STOP. Este fenómeno ha extendido el código genético a 21 aminoácidos. En el 2009, un estudio realizado por Turanov et al. demostró que en un ciliado de la especie Euplotes crassus usaba este mismo codón UGA no sólo para la selenocisteína sino también para la cisteína, gracias a una modificación estructural la región terminal no traducida (UTR) del ARN mensajero, siendo el primer caso de que un mismo codón codifica para dos aminoácidos, deshaciendo la principal característica del código genético.

Por otro lado, en el año 2002, dos reportes presentados en Science uno por Srinivasan et al. y el otro por Hao et al. demostraron que en una arquea de la especie Methanosarcina barkeri usaba el codón de termino UAG para codificar un nuevo aminoácido llamado pirrolisina, extendiendo el código genético a 22 aminoácidos. Sin embargo, la biosíntesis de este aminoácido era desconocido hasta que investigadores de la Universidad Estatal de Ohio liderados por la Dra. Marsha A. Gaston lograron describirla según reportaron la semana pasada en Nature.

La capacidad de las Methanosarcina de usar el codón de término UAG para codificar la pirrolisina se debe gracias a un clúster de genes (operón) llamado pylTSBCD. Gaston et al. aislaron este grupo de genes y lo insertaron en un microorganismo que es más fácil de manejar como lo es nuestro amigo E. coli. Los investigadores también insertaron en E. coli el gen que codifica para la metiltransferasa de otra Methanosarcina ya que esta proteína tiene dentro de su secuencia de aminoácidos a la pirrolisina.

Antes se creía que la formación de la pirrolisina derivaba de la unión de la lisina con otro aminoácido como la D-ornitina, el D-glutamato, la D-isoleucina o la D-prolina. Para ver como se formaba la pirrolisina, Gaston et al. usaron una lisina marcada isotópicamente con un carbono más pesado (13C) y un nitrógeno más pesado (15N) en cada uno de sus átomos (6 de carbono y 2 de nitrógeno). Luego, purificaron la metiltransferasa resultante para analizar la composición isotópica de la pirrolisina.

Al comparar la región de la metiltransferasa que contenía a la pirrolisina de una bacteria que fue sometida a la lisina isotópicamente marcada con la de una bacteria que fue sometida a una lisina normal observaron que la diferencia de masas entre ellas era equivalente a 12 átomos de carbono-13 y 3 de nitrógeno-15, lo que indicaría que la pirrolisina estaba formada por la unión de dos moléculas de lisina con la pérdida de un grupo nitrogenado. Gracias a estos datos, los investigadores pudieron hacer una reconstrucción probable de las reacciones químicas involucradas en la formación de la pirrolisina.

pirrolisina

La biosíntesis de la pirrolisina fue deducida a partir de la similaridad de las secuencias de los genes PylB, PylC y PylD, con secuencias conocidas de enzimas previamente estudiadas y cuya función se conoce. Entonces, lo que faltaría para completar este estudio sería purificar cada una de las proteínas que se creen que participan en la biosíntesis de la pirrolisina (pylBCD), para así demostrar si estas realizan o no las reacciones predichas.


Referencia:

ResearchBlogging.orgGaston, M., Zhang, L., Green-Church, K., & Krzycki, J. (2011). The complete biosynthesis of the genetically encoded amino acid pyrrolysine from lysine Nature, 471 (7340), 647-650 DOI: 10.1038/nature09918

Comentarios

Entradas más populares de este blog

¿Por qué tanto miedo al bromuro de etidio?

El bromuro de etidio (BrEt) es un agente químico muy usado en técnicas de biología molecular para teñir nuestros geles de agarosa y poder apreciar nuestras bandas de ADN; ya sean de los productos de extracción o de PCR. Existen dos formas de teñir los geles: i) remojando el gel de agarosa por 15 minutos en una bandeja con BrEt (0,5 mg/L) después de haber hecho la electroforesis o ii) añadiendo el BrEt directamente al gel al momento de prepararlo. Con la primera evitamos contaminar nuestra cámara de electroforesis con BrEt y con la segunda evitamos exponernos a salpicaduras y otros accidentes que pueden ocurrir al hacer la tinción en bandeja. Se han dado cuenta que desde que entramos a un laboratorio de biología molecular nos tienen traumados con el BrEt: "¡Cuidado que te salpique!", "¡no lo huelas!", "¡usa tres guantes!", "¡no es por ese lado!", "¡si te cae en la piel te va a dar cáncer y te puedes morir!", entre otras cosas más.

TOP 10: Las peores cosas de trabajar en un laboratorio

Encontré este interesante artículo publicado en Science Careers . La verdad es que me ha gustado mucho —me sentí identificado con varios aspectos— tanto que me tomé la libertad de traducirlo y hacerle algunas modificaciones, en base a mi experiencia personal, para ustedes. Tus amigos no-científicos no entienden lo que haces. Cuando te reúnes con tus amigos del colegio o del barrio y empiezan a hablar acerca de sus trabajos, qué es lo que hacen y cuáles han sido los logros más recientes, ellos fácilmente lo pueden resumir en un “ he construido una casa/edificio/puente/carretera ”, o “ he dejado satisfecho a un cliente ” (que feo sonó eso xD), o tu amigo abogado dirá “ he sacado de la cárcel a un asaltante confeso y encima he logrado que lo indemnicen ”, pero cuando te toca a ti ¿qué dirás? “ Bueno he curado… uhm, la verdad no he curado, las ratas viven un poco más pero no las he curado, así que he descubierto… no, esa palabra es muy fuerte. La verdad he probado… este… tampoco, las

IV Carnaval de Biología

Esta fiesta se inició en el mes de Febrero, cuando @Raven_neo a través de su blog, Micro Gaia , fue el visionario que introdujo el primer Carnaval de Biología a la red. La aceptación fue inmediata, más de 30 entradas se registraron en esta primera edición . Luego le tocó el turno a @SergioEfe a través de su blog La muerte de un ácaro , con nuevos blogs uniéndose a la fiesta . El mes pasado fue el turno para @pakozoic a través de su blog El Pakozoico , quedando demostrado que el carnaval llegó para quedarse . Ahora, desde el otro lado del mundo, es un honor anunciarles que BioUnalm será anfitrión de la IV Edición del Carnaval de Biología , que se dará inicio el próximo domingo 8 de Mayo y finalizará el 31 de Mayo. Para poder participar, las reglas son muy simples: 1. Participación libre. 2. Cada mes el blog anfitrión anunciará el inicio del Carnaval indicando la fecha de comienzo (se recomienda que sea la misma que la del anuncio) y la fecha de fin del mism