Ir al contenido principal

¿Por qué estudiar las moléculas individualmente?

Hace unas semanas les comenté acerca de iBioSeminars, un recurso disponible de manera gratuita y online que nos ofrece clases y seminarios de los científicos más renombrados del mundo. Esta herramienta, es sin dudas, el mejor complemento para las clases que llevamos en la universidad.

La semana pasada salió la primera clase del Dr. Carlos Bustamante, quien labora como investigador y docente en la prestigiosa UC Berkeley. En el presente seminario, el Dr. Bustamante nos explica la importancia de estudiar las reacciones químicas a través de sustratos y enzimas individuales. La forma clásica como hemos estudiado la química y la bioquímica a través de los años se basa en el ensamble estadístico, o sea, estudiamos las reacciones químicas y su cinética a nivel de poblaciones de moléculas y los resultados obtenidos se dan en función al promedio de las reacciones que ocurrieron en cada una de las moléculas de dicha población.

Para explicarlo de manera sencilla, tenemos dos componentes (A y B), que al mezclarse forman un tercer componente (C), el cual presenta un color característico en la solución. Para caracterizar la reacción ponemos una determinada cantidad de A y una determinada cantidad de B, y después de ocurrida la reacción, medimos en un espectrofotómetro la cantidad de luz que absorbe la solución coloreada que se debe a la producción de C y determinamos su concentración. Luego, haciendo el balance estequiométrico sabemos exactamente cuanto A y cuanto B necesitamos para producir C. Por ejemplo: Con 1 mol de A y 1 mol de B producimos 1 mol de C. Esto no quiere decir que cada molécula de A que se encuentre con una molécula de B producirá automáticamente una molécula de C, habrá casos en los que no se de dicha reacción. Las causas pueden ser varias: las moléculas A o B están degradadas, no hay la energía cinética suficiente como para iniciar la reacción, o hay presencia dos o más de estereoisómeros de A o B que no les permiten reaccionar normalmente. Pero, si tomamos a las millones de moléculas de A y las millones de moléculas de B, en su mayoría producirán millones de moléculas de C. Si lo vemos todo como un conjunto la conclusión es que A reacciona con B y produce C.

Por otro lado, en nuestras células las reacciones químicas se dan a nivel de pocas moléculas, y debido al pequeño volumen de una célula, basta que una sola molécula este presente para que su concentración intracelular esté en el orden de las nanomoles. Por ejemplo, una bacteria tienen sólo una molécula de ADN de millones de pares de base y para su replicación sólo actuarán dos moléculas de ADN polimerasa. En otras palabras, esta y otras reacciones bioquímicas intracelulares se dan a nivel de moléculas individuales, y deben ser estudiadas como tales. Entonces, ¿cómo podemos estudiarlas? El Dr. Bustamante tiene la respuesta:

ibioseminars

[Click para ver el video]

Vía | iBioSeminars.

Comentarios

Entradas más populares de este blog

Algodón rosa

La mayoría de las personas dan por hecho que el algodón es blanco. Lo vemos así en hisopos, rollos y torundas. Sin embargo, existen de diversos colores, especialmente, en Perú. Marrón, crema, pardo, verde, son algunos de ellos. Como esos algodones no se pueden teñir, la industria textil optó por las variedades de fibra blanca. Muestras de algodón de color. Fuente: Ing. Patricia Ocampo. En la actualidad hay una mayor concienciación por los impactos ambientales que generan los productos que consumimos. La ropa es una de ellas. Los tintes empleados generan contaminación de los cuerpos de agua. En ese contexto, los algodones pigmentados adquieren mayor relevancia, aunque la variedad de colores existentes es muy limitada. La naturaleza tiene infinidad de colores. Un claro ejemplo son las flores: amarillas, azules, rosadas, violetas, rojas y más. Cada pigmento es producido por diversas enzimas que catalizan reacciones químicas para que una molécula se convierta en otra. Por ejemplo, la tiros

Fusión y fisión de mitocondrias

Se cree que los procariotas aparecieron en el planeta hace unos 3,500 millones de años, mientras que los eucariotas lo hicieron hace unos 2,000 millones de años. Pero, si los procariotas llevan una ventaja de 1,500 millones de años a los eucariotas, ¿por qué ellos no son los organismos más complejos? La respuesta son las mitocondrias [Les recomiendo leer este artículo publicado en el blog]. Todos conocemos a las mitocondrias, si no las recuerdan, aquí se las presento. Tal vez la imagen que tenemos de ellas es que se encuentran diseminadas por toda la célula, aisladas unas de otras o, a lo mucho, reuniéndose en pequeños grupos. Sin embargo, esto no es así. En realidad, las mitocondrias son unos organelos muy dinámicos, que se encuentran fusionándose y dividiéndose constantemente, pero hasta ahora no se sabe a ciencia cierta que rol cumple este proceso. Axel Kowald de la Universidad Humboldt de Berlín y Tom B. L. Kirkwood de la Universidad de Newcastle han desarrollado una teoría

Ozono por el culo

La insuflación rectal de ozono , que en términos coloquiales es ozono por el culo  ( OxC , de forma abreviada), es una forma de ozonoterapia.  Según sus promotores , esta terapia "es muy potente en cuanto a la eliminación de gérmenes intestinales como virus, bacterias, protozoos, hongos, etc ". Incluso pidieron a la Organización Mundial de la Salud que lo usaran para el tratamiento del Ébola.  Según Ozonomédica , la ozonoterapia, en general, "es una eficaz alternativa en el tratamiento y control de muchas patologías y enfermedades crónicas" que incluso "puede retrasar o evitar la aparición de diabetes, cáncer, artritis, artrosis, entre otras". Paciente recibiendo OxC. Fuente: Ozonoterapia . Sin embargo,  de acuerdo con la Administración de Alimentos y Medicamentos de los Estados Unidos ( FDA ), el ozono es un gas tóxico sin alguna aplicación médica conocida . Si bien es cierto, el ozono nos protege de la peligrosa radiación ultravi