Ir al contenido principal

¿Cómo se controla el ritmo circadiano en los glóbulos rojos?

Nuestro planeta se rige bajo ciclos repetitivos de 24 horas, donde 12 horas son de día y 12 de noche. Todos los organismos vivos estamos en sincronía con estos ciclos. Esto explica por qué durante la noche nos da sueño y las plantas xerófitas abren sus estomas. Esto también explica por qué cuando hacemos un viaje muy largo a otro continente nos cuesta mucho adaptarnos al cambio de horario, debemos esperar unos cuantos días para que nuestro cuerpo vuelva a sincronizarse con los ciclos del planeta.

A éste fenómeno biológico se le llama los ritmos circadianos. La luz y la temperatura juegan papeles muy importantes en la regulación de los ritmos circadianos ya que es a través de estos factores que percibimos cuándo es de día y cuando es de noche. Muchos investigadores han encontrado varios genes involucrados en la regulación de estos ciclos diarios, los cuales se “prenden“ o “apagan” dependiendo de la hora que sea. Estos genes expresarán proteínas (enzimas, factores de transcripción. etc.) que controlarán nuestro metabolismo durante cada ciclo.

Pero, si es la expresión de determinados genes los que controlan los ciclos diarios, ¿qué pasa con los glóbulos rojos? Uhm… buena pregunta. Bueno, para recordar, los glóbulos rojos son células que tienen la función de transportar el oxígeno en la sangre gracias a la hemoglobina que poseen. Estas células, extrañamente, no tienen núcleo, por lo tanto no tendrán genes que expresen nuevas proteínas. Entonces, ¿cómo hacen para controlar su ritmo circadiano?

Científicos ingleses han encontrado evidencias de que el reloj circadiano de estas células funciona independientemente de la actividad genética, demostrando por primera vez este mecanismo de control en eucariotas. Además, este mismo mecanismo es compartido por otro organismo completamente diferente, el alga unicelular Ostreococcus tauri, lo cual indicaría que se trata de una forma primitiva del control del ritmo circadiano.

Estudios previos ya habían demostrado que una proteína llamada peroxirredoxina (PRX), una enzima antioxidante que protege a las células de los radicales libres con la capacidad de dañar el ADN y otras estructuras celulares, estaba involucrada en el control del ritmo circadiano en células hepáticas. Así que O'Neil y colaboradores aislaron eritrocitos de un grupo de voluntarios perfectamente saludables para ver cómo actúa esta proteína en una célula sin carga genética.

Las células fueron mantenidas en un medio de cultivo por 60 horas a una temperatura constante y luego se tomaron muestras de los cultivos cada 4 horas para medir el estado de oxidación de las PRX. Como era de esperarse, las PRX mostraban oxidaciones cíclicas de 24 horas. Luego, para corroborar estos datos, sometieron a las células a periodos de altas y bajas temperaturas, de 12 horas cada una, simulando las condiciones de un día normal. Las PRX respondieron de la misma manera a estos estímulos, corroborándose su papel en los ritmos circadianos.

Pero, este no era la única célula que realizaba este mecanismo. Antes de realizarse este descubrimiento en los eritrocitos, un alga unicelular de nombre Ostreococcus tauri también tenía un mecanismo de control del ritmo circadiano independiente de la expresión genética. Así que decidieron probar si la PRX del alga funcionaba de la misma manera que en el glóbulo rojo. Como esta alga poseía su núcleo, por lo tanto todo su material genético, los investigadores usaron ágente químicos que bloqueaban la expresión del gen que codifica para la PRX y sometieron a las células a los mismos experimentos que a los glóbulos rojos, esta vez usando ciclos de 12 horas de luz y oscuridad. Fue asombroso ver que la PRX de esta alga, a pesar de ser un organismo evolutivamente muy distante a nosotros, comparte el mismo mecanismo de regulación del ciclo circadiano.

Todos los seres que vivimos en la Tierra respondemos a los ciclos diarios de luz y oscuridad, de altas y bajas temperaturas, pero lo hacemos de distintas maneras, y los genes involucrados en el control de este mecanismo son extremadamente diferentes al compararlos entre animales, plantas, algas y metazoos. Este mecanismo, que no necesita de la expresión genética, puede ser común en todos los eucariotas, aunque aún falta determinar eso. Sin embargo, aún se desconoce la función exacta de la PRX, su papel que cumple en el control del ritmo circadiano y la relación con los otros mecanismos de control.

Lo que si se sabe es que la PRX cumple un papel importante en el control de ciertas vías metabólicas, sobre todo los que están involucrados con la producción de energía. Por esta razón, cuando hay fallas en el control de nuestro ritmo circadiano vemos la presencia de muchos desórdenes metabólicos que pueden conducir a graves enfermedades.

Vía Science.

Comentarios

Entradas más populares de este blog

¿Por qué tanto miedo al bromuro de etidio?

El bromuro de etidio (BrEt) es un agente químico muy usado en técnicas de biología molecular para teñir nuestros geles de agarosa y poder apreciar nuestras bandas de ADN; ya sean de los productos de extracción o de PCR. Existen dos formas de teñir los geles: i) remojando el gel de agarosa por 15 minutos en una bandeja con BrEt (0,5 mg/L) después de haber hecho la electroforesis o ii) añadiendo el BrEt directamente al gel al momento de prepararlo. Con la primera evitamos contaminar nuestra cámara de electroforesis con BrEt y con la segunda evitamos exponernos a salpicaduras y otros accidentes que pueden ocurrir al hacer la tinción en bandeja. Se han dado cuenta que desde que entramos a un laboratorio de biología molecular nos tienen traumados con el BrEt: "¡Cuidado que te salpique!", "¡no lo huelas!", "¡usa tres guantes!", "¡no es por ese lado!", "¡si te cae en la piel te va a dar cáncer y te puedes morir!", entre otras cosas más.

TOP 10: Las peores cosas de trabajar en un laboratorio

Encontré este interesante artículo publicado en Science Careers . La verdad es que me ha gustado mucho —me sentí identificado con varios aspectos— tanto que me tomé la libertad de traducirlo y hacerle algunas modificaciones, en base a mi experiencia personal, para ustedes. Tus amigos no-científicos no entienden lo que haces. Cuando te reúnes con tus amigos del colegio o del barrio y empiezan a hablar acerca de sus trabajos, qué es lo que hacen y cuáles han sido los logros más recientes, ellos fácilmente lo pueden resumir en un “ he construido una casa/edificio/puente/carretera ”, o “ he dejado satisfecho a un cliente ” (que feo sonó eso xD), o tu amigo abogado dirá “ he sacado de la cárcel a un asaltante confeso y encima he logrado que lo indemnicen ”, pero cuando te toca a ti ¿qué dirás? “ Bueno he curado… uhm, la verdad no he curado, las ratas viven un poco más pero no las he curado, así que he descubierto… no, esa palabra es muy fuerte. La verdad he probado… este… tampoco, las

IV Carnaval de Biología

Esta fiesta se inició en el mes de Febrero, cuando @Raven_neo a través de su blog, Micro Gaia , fue el visionario que introdujo el primer Carnaval de Biología a la red. La aceptación fue inmediata, más de 30 entradas se registraron en esta primera edición . Luego le tocó el turno a @SergioEfe a través de su blog La muerte de un ácaro , con nuevos blogs uniéndose a la fiesta . El mes pasado fue el turno para @pakozoic a través de su blog El Pakozoico , quedando demostrado que el carnaval llegó para quedarse . Ahora, desde el otro lado del mundo, es un honor anunciarles que BioUnalm será anfitrión de la IV Edición del Carnaval de Biología , que se dará inicio el próximo domingo 8 de Mayo y finalizará el 31 de Mayo. Para poder participar, las reglas son muy simples: 1. Participación libre. 2. Cada mes el blog anfitrión anunciará el inicio del Carnaval indicando la fecha de comienzo (se recomienda que sea la misma que la del anuncio) y la fecha de fin del mism