Ir al contenido principal

¿Cómo saltan las pulgas?

Todos conocemos la gran capacidad de salto de las pulgas, pero la forma como se lleva a cabo ha sido un amplio tema de debate en el mundo científico, durante los últimos 50 años. Dos investigadores de la Universidad de Cambridge (Reino Unido), usando cámaras de video de alta velocidad, por fin han encontrado la respuesta a esta interrogante. Los resultados fueron publicados ayer en el Journal of Experimental Biology.

La pulga, que sólo llega a medir algo más de 1mm de longitud, puede saltar hasta 50cm de distancia, tal como lo hace la pulga del perro, Ctenocephalides canis. Este salto equivale muchas veces su propia longitud; algo así como si un humano, en una prueba de salto largo, registre una marca superior a los 50m. Por si fuera poco, la aceleración que alcanza al momento de despegar hace que la pulga soporte cerca a 100 veces la fuerza de gravedad por un pequeño intervalo de tiempo (~1 milisegundo) ¿De donde sale la energía para realizar este gran salto?

Ningún músculo conocido en las pulgas es capaz de generar tal cantidad de energía como para poder propulsar al bicho a una distancia tan larga. En 1960, se descubrió que la energía requerida para el salto se almacenaba a manera de un resorte en una proteína elástica llamada resilina. Sin embargo, no se sabía a donde iba el poder almacenado en el resorte. Esto fue lo que intrigó a los científicos por muchos años. Unos creían que la fuerza iba hacia sus trocánteres (rodillas) y otros creían que iban hacia sus tarsos (pies).

Gracias a la tecnología de nuestros días, Sutton & Burrows lograron filmar el mecanismo de salto de unas pequeñas pulgas del erizo llamadas Archaeopsyllus erinacei. Antes de proceder a filmarlos diseñaron modelos matemáticos para emular sus saltos, para esto primero determinaron la fisionomía de sus piernas usando un microscopio electrónico de barrido.

Al analizar los videos observaron que al menos en el 10% de los casos, las rodillas de las pulgas ni siquiera tocaban el suelo, pero aún así la velocidad y distancia del salto fue la misma con respecto a aquellas que si tuvieron contacto con el suelo. Esto indicaba que el contacto de los trocánteres con el suelo no era indispensable par dar el salto. Además, las imágenes del microscopio revelaron la presencia de unas pequeñas espinas en la tibia y el tarso las cuales favorecían el contacto y la transferencia de energía al suelo. Estas pequeñas espinas no fueron encontrados en las rodillas de las pulgas lo que indicaría que la transferencia de energía de la proteína elástica se da hacia el tarso.

Referencia:

Sutton, GP., Burrows, M. Biomechanics of jumping in the flea. J Exp Biol  214: 836-847. (2011).
doi: 10.1242/jeb.052399

Vía Wired Science.

Comentarios

Entradas más populares de este blog

Algodón rosa

La mayoría de las personas dan por hecho que el algodón es blanco. Lo vemos así en hisopos, rollos y torundas. Sin embargo, existen de diversos colores, especialmente, en Perú. Marrón, crema, pardo, verde, son algunos de ellos. Como esos algodones no se pueden teñir, la industria textil optó por las variedades de fibra blanca. Muestras de algodón de color. Fuente: Ing. Patricia Ocampo. En la actualidad hay una mayor concienciación por los impactos ambientales que generan los productos que consumimos. La ropa es una de ellas. Los tintes empleados generan contaminación de los cuerpos de agua. En ese contexto, los algodones pigmentados adquieren mayor relevancia, aunque la variedad de colores existentes es muy limitada. La naturaleza tiene infinidad de colores. Un claro ejemplo son las flores: amarillas, azules, rosadas, violetas, rojas y más. Cada pigmento es producido por diversas enzimas que catalizan reacciones químicas para que una molécula se convierta en otra. Por ejemplo, la tiros

Fusión y fisión de mitocondrias

Se cree que los procariotas aparecieron en el planeta hace unos 3,500 millones de años, mientras que los eucariotas lo hicieron hace unos 2,000 millones de años. Pero, si los procariotas llevan una ventaja de 1,500 millones de años a los eucariotas, ¿por qué ellos no son los organismos más complejos? La respuesta son las mitocondrias [Les recomiendo leer este artículo publicado en el blog]. Todos conocemos a las mitocondrias, si no las recuerdan, aquí se las presento. Tal vez la imagen que tenemos de ellas es que se encuentran diseminadas por toda la célula, aisladas unas de otras o, a lo mucho, reuniéndose en pequeños grupos. Sin embargo, esto no es así. En realidad, las mitocondrias son unos organelos muy dinámicos, que se encuentran fusionándose y dividiéndose constantemente, pero hasta ahora no se sabe a ciencia cierta que rol cumple este proceso. Axel Kowald de la Universidad Humboldt de Berlín y Tom B. L. Kirkwood de la Universidad de Newcastle han desarrollado una teoría

Ozono por el culo

La insuflación rectal de ozono , que en términos coloquiales es ozono por el culo  ( OxC , de forma abreviada), es una forma de ozonoterapia.  Según sus promotores , esta terapia "es muy potente en cuanto a la eliminación de gérmenes intestinales como virus, bacterias, protozoos, hongos, etc ". Incluso pidieron a la Organización Mundial de la Salud que lo usaran para el tratamiento del Ébola.  Según Ozonomédica , la ozonoterapia, en general, "es una eficaz alternativa en el tratamiento y control de muchas patologías y enfermedades crónicas" que incluso "puede retrasar o evitar la aparición de diabetes, cáncer, artritis, artrosis, entre otras". Paciente recibiendo OxC. Fuente: Ozonoterapia . Sin embargo,  de acuerdo con la Administración de Alimentos y Medicamentos de los Estados Unidos ( FDA ), el ozono es un gas tóxico sin alguna aplicación médica conocida . Si bien es cierto, el ozono nos protege de la peligrosa radiación ultravi