Ir al contenido principal

¿Cómo saltan las pulgas?

Todos conocemos la gran capacidad de salto de las pulgas, pero la forma como se lleva a cabo ha sido un amplio tema de debate en el mundo científico, durante los últimos 50 años. Dos investigadores de la Universidad de Cambridge (Reino Unido), usando cámaras de video de alta velocidad, por fin han encontrado la respuesta a esta interrogante. Los resultados fueron publicados ayer en el Journal of Experimental Biology.

La pulga, que sólo llega a medir algo más de 1mm de longitud, puede saltar hasta 50cm de distancia, tal como lo hace la pulga del perro, Ctenocephalides canis. Este salto equivale muchas veces su propia longitud; algo así como si un humano, en una prueba de salto largo, registre una marca superior a los 50m. Por si fuera poco, la aceleración que alcanza al momento de despegar hace que la pulga soporte cerca a 100 veces la fuerza de gravedad por un pequeño intervalo de tiempo (~1 milisegundo) ¿De donde sale la energía para realizar este gran salto?

Ningún músculo conocido en las pulgas es capaz de generar tal cantidad de energía como para poder propulsar al bicho a una distancia tan larga. En 1960, se descubrió que la energía requerida para el salto se almacenaba a manera de un resorte en una proteína elástica llamada resilina. Sin embargo, no se sabía a donde iba el poder almacenado en el resorte. Esto fue lo que intrigó a los científicos por muchos años. Unos creían que la fuerza iba hacia sus trocánteres (rodillas) y otros creían que iban hacia sus tarsos (pies).

Gracias a la tecnología de nuestros días, Sutton & Burrows lograron filmar el mecanismo de salto de unas pequeñas pulgas del erizo llamadas Archaeopsyllus erinacei. Antes de proceder a filmarlos diseñaron modelos matemáticos para emular sus saltos, para esto primero determinaron la fisionomía de sus piernas usando un microscopio electrónico de barrido.

Al analizar los videos observaron que al menos en el 10% de los casos, las rodillas de las pulgas ni siquiera tocaban el suelo, pero aún así la velocidad y distancia del salto fue la misma con respecto a aquellas que si tuvieron contacto con el suelo. Esto indicaba que el contacto de los trocánteres con el suelo no era indispensable par dar el salto. Además, las imágenes del microscopio revelaron la presencia de unas pequeñas espinas en la tibia y el tarso las cuales favorecían el contacto y la transferencia de energía al suelo. Estas pequeñas espinas no fueron encontrados en las rodillas de las pulgas lo que indicaría que la transferencia de energía de la proteína elástica se da hacia el tarso.

Referencia:

Sutton, GP., Burrows, M. Biomechanics of jumping in the flea. J Exp Biol  214: 836-847. (2011).
doi: 10.1242/jeb.052399

Vía Wired Science.

Comentarios

Entradas más populares de este blog

La oruga derretida

Las larvas de la polilla gitana ( Lymantria dispar ) llevan una vida tranquila. Durante el día, descansan en las grietas de la corteza de los árboles o enterradas en el suelo para evitar ser capturadas por sus depredadores. En las noches, salen de sus escondites y se alimentan de hojas hasta minutos antes del amanecer. A los cuarenta días de vida, se convierten en pupas, y dos semanas después, emergen como polillas adultas. Se aparean, ponen cientos de huevecillos y reinician su ciclo biológico. Oruga de la polilla gitana. Fuente: Wikimedia Commons . Una mañana, una de estas orugas aparece colgada boca abajo en la hoja más alta de una planta. Parece muerta. De pronto, empieza a estirarse y derretirse como si fuera un pedazo de plástico puesto cerca del fuego. La oruga literalmente gotea sobre las hojas que se encuentran debajo. Es una escena es macabra. Ninguna oruga presenció este hecho. Era de día y estaban escondidas. Pero en la noche, sin darse cuenta, se alimentan de las hojas s

¿Por qué tanto miedo al bromuro de etidio?

El bromuro de etidio (BrEt) es un agente químico muy usado en técnicas de biología molecular para teñir nuestros geles de agarosa y poder apreciar nuestras bandas de ADN; ya sean de los productos de extracción o de PCR. Existen dos formas de teñir los geles: i) remojando el gel de agarosa por 15 minutos en una bandeja con BrEt (0,5 mg/L) después de haber hecho la electroforesis o ii) añadiendo el BrEt directamente al gel al momento de prepararlo. Con la primera evitamos contaminar nuestra cámara de electroforesis con BrEt y con la segunda evitamos exponernos a salpicaduras y otros accidentes que pueden ocurrir al hacer la tinción en bandeja. Se han dado cuenta que desde que entramos a un laboratorio de biología molecular nos tienen traumados con el BrEt: "¡Cuidado que te salpique!", "¡no lo huelas!", "¡usa tres guantes!", "¡no es por ese lado!", "¡si te cae en la piel te va a dar cáncer y te puedes morir!", entre otras cosas más.

¿Cómo eran los primeros tomates que llegaron a Europa?

Las primeras exploraciones europeas al continente americano, allá por inicios del siglo XVI, trajeron consigo muchas riquezas, especialmente, plantas que eran cultivas y consumidas al otro lado del mundo. Una de ellas fue el tomate. Hoy es la hortaliza más cultivada en el mundo. Anualmente se producen unas 180 millones de toneladas en 4.85 millones de hectáreas. Los tomates de hoy no se parecen ni saben como los que llegaron a Europa hace 500 años. Esto se debe a que la selección y mejora genética, que se ha dado por décadas, se orientó hacia la obtención de frutos más redondos, uniformes y resistentes, que duren más en los anaqueles de los supermercados y resistan el aplastamiento. La consecuencia fue que, en el proceso, se perdieron aquellos genes y alelos que codifican mayores niveles de azúcares y compuestos volátiles , que son claves en el sabor de este fruto. Con el fin de saber la apariencia que tenían los primeros tomates que llegaron a Europa, un grupo de investigadores neerla