Ir al contenido principal

Se identifica un gen que ayuda a las plantas a usar menos agua y soportar las sequías

Vivimos en un mundo en el cual el agua es un bien cada vez más escaso. La agricultura —que es la actividad humana que más agua utiliza— es consciente de este problema y tiene como principal objetivo desarrollar cultivares que requieran cada vez menos agua y sean más resistentes a los ambientes secos. Científicos de la Universidad de Purdue, han encontrado una mutación en un gen que permite a la planta modelo, Arabidopsis thaliana, soportar bajos niveles de agua sin perder biomasa. Este trabajo fue publicado en la revista Plant Cell.

Las plantas, naturalmente, abren y cierran sus estomas, los cuales son unos poros por donde entra el CO2 para ser fijado y transformado en nutrientes gracias a la fotosíntesis. Sin embargo, al abrir sus estomas, la planta también pierde agua debido a la transpiración. Por ejemplo, las plantas que viven en zonas desérticas han evolucionado un mecanismo que les permite evitar la pérdida del valioso líquido. Durante el día, los estomas permanecen cerrados para evitar la pérdida de agua por el fuerte calor y la sequedad del ambiente, sin embargo, la energía producida por la luz del sol es almacenada para ser usada durante la noche, que es cuando abren sus estomas para permitir el paso del CO2 con una poca pérdida de agua, debido a las bajas temperaturas.

Entonces, para diseñar una planta que sea resistente a los ambientes secos o requieran de poca cantidad de agua para crecer, ¿deberíamos mantener cerrados sus estomas? Sí, pero al hacer esto, la planta no podrá asimilar CO2 y limitará la eficiencia de su fotosíntesis y, por lo tanto, su crecimiento. En otras palabras, habrá una pérdida de biomasa, lo que significa una menor productividad.

Los investigadores de la Universidad de Purdue, liderados por Chal Yul Yoo, encontraron una mutación en Arabidopsis thaliana que reducía su número de estomas. Así que a un menor número de estomas, la pérdida de agua por transpiración será menor. Sin embargo, lo más interesante del descubrimiento fue que, a pesar de tener menos estomas, su capacidad para asimilar el CO2 no fue afectada ya que fue similar al de las plantas silvestres.

gtl1Un análisis molecular identificó al gen gtl1 (GT-2 LIKE 1), el cual es un factor de transcripción encargado de regular la expresión de determinados genes. Al presentarse este gen mutado, la asimilación de CO2 no se veía afectada pero la pérdida de agua se redujo en in 20%. Para determinar la asimilación de CO2 pusieron a las plantas dentro de una cámara cerrada con una cantidad conocida de CO2. Después de un periodo de tiempo se cuantificó la cantidad de CO2 que quedó en la cámara usando un analizador de gases infrarrojo. Lo mismo hicieron para determinar la cantidad de agua liberada, para esto cuantificaron —usando el mismo equipo del experimento anterior — el vapor de agua había en la cámara después de un determinado tiempo.

Además, las plantas con las mutaciones en el gen gtl1 tuvieron un mayor porcentaje de supervivencia (Figura E y F) y una mayor facilidad de recuperación después de haber sido sometidos a muy bajas concentraciones de agua en el suelo (Figura D).

Luego, quisieron determinar que genes eran afectados por este factor de transcripción mutante. Para esto, identificaron los 20 genes conocidos que controlan el desarrollo de los estomas. Los investigadores observaron que era el gen sdd1 (STOMATAL DENSITY AND DISTRIBUTION 1) el que estaba altamente expresado en los mutantes. Este gen, como su nombre lo dice, es el responsable de regular el número de estomas en las hojas. Al parecer el gen sdd1 está regulado por GTL1, y como en los mutantes este factor de transcripción no funciona, sdd1 podrá expresarse libremente., reduciendo el número de estomas.

Este estudio demuestra que pueden desarrollarse cultivares que requieran menor cantidad de agua sin afectar su rendimiento y productividad, así que el siguiente paso es buscar e identificar genes homólogos a gtl1 en plantas cultivadas y ver si los mutantes también responden de la misma manera.

Referencia:

ResearchBlogging.orgYoo, C., Pence, H., Jin, J., Miura, K., Gosney, M., Hasegawa, P., & Mickelbart, M. (2010). The Arabidopsis GTL1 Transcription Factor Regulates Water Use Efficiency and Drought Tolerance by Modulating Stomatal Density via Transrepression of SDD1 THE PLANT CELL ONLINE DOI: 10.1105/tpc.110.078691

Imagen: Flickr @cmdphotos.

Comentarios

Entradas más populares de este blog

Ozono por el culo

La insuflación rectal de ozono , que en términos coloquiales es ozono por el culo  ( OxC , de forma abreviada), es una forma de ozonoterapia.  Según sus promotores , esta terapia "es muy potente en cuanto a la eliminación de gérmenes intestinales como virus, bacterias, protozoos, hongos, etc ". Incluso pidieron a la Organización Mundial de la Salud que lo usaran para el tratamiento del Ébola.  Según Ozonomédica , la ozonoterapia, en general, "es una eficaz alternativa en el tratamiento y control de muchas patologías y enfermedades crónicas" que incluso "puede retrasar o evitar la aparición de diabetes, cáncer, artritis, artrosis, entre otras". Paciente recibiendo OxC. Fuente: Ozonoterapia . Sin embargo,  de acuerdo con la Administración de Alimentos y Medicamentos de los Estados Unidos ( FDA ), el ozono es un gas tóxico sin alguna aplicación médica conocida . Si bien es cierto, el ozono nos protege de la peligrosa radiación ultravi

¿Por qué el tucán tiene un pico tan grande?

Los tucanes ostentan picos enormes y vistosos. Yo pensaba que era producto de la selección sexual, es decir, mejoraba sus chances de conseguir a una buena tucana con quien aparearse y heredar sus genes a la siguiente generación. Sin embargo, habían investigadores que creían que los enormes picos eran un horrible vestigio de algún ancestro primitivo. Pero la verdadera razón era otra según concluye un estudio publicado en Science . Los animales nos podemos catergorizar en dos tipos: los homeotermos (o endotermos) y los poiquilotermos (o ectotermos). Los homeotermos (aves y mamíferos) somos capaces de mantener una temperatura corporal constante (en nuestro caso 37ºC). Cualquier desvío abrupto podría generarnos problemas. Mientras que los poiquilotermos (reptiles) suelen tomar largas horas de sol para calentar su cuerpo y permitir que su metabolismo funcione correctamente. Los seres humanos, por ejemplo, para mantener una temperatura constante sudamos o quemamos nuestras reservas d

¿Cuál de los cromosomas X se inactiva en las hembras?

Si preguntamos en la calle ¿cuál es la principal diferencia entre un varón y una mujer?, seguramente las respuestas más frecuentes serán los senos, los órganos reproductores, la barba, la obsesión por los zapatos o por los videojuegos, entre otros.  Pero muy pocos —tal vez algunos biólogos que cayeron en la encuesta— dirán “¡los cromosomas sexuales!”. Y tendrían razón.  La diferencia más sustancial, a partir de la cual se originan todas las demás, son los cromosomas sexuales. En los mamíferos, las hembras tienen dos cromosomas X (XX) y los machos un cromosoma X y un cromosoma Y (XY). A pesar de ser chiquito, el cromosoma Y porta un gen esencial para lograr la diferenciación masculina. De no ser por él, prácticamente todos seríamos hembras, así tuviéramos solo un cromosoma X (X0) como en el Síndrome de Turner . Entonces, serán los machos quienes finalmente determinen el sexo de los hijos porque sus espermatozoides portarán o bien el cromosoma X o bien el cromosoma Y; mient