Ir al contenido principal

¿Cuál es la molécula sintética más grande que existe?

Uhm… difícil pregunta. Bueno, en la naturaleza existen muchas moléculas de gran tamaño, un claro ejemplo son las proteínas o el ADN, y son grandes debido a que están formados por la unión de muchas moléculas más pequeñas. Las proteínas están formadas por la unión de aminoácidos, y el ADN por la unión de nucleótidos.

Gracias a la química sintética se han podido crear también moléculas sumamente grandes y complejas, muchas de ellas son usadas actualmente como agentes terapéuticos, insecticidas, antibióticos, etc. Pero es muy difícil construir una molécula que sea grande y estable a la vez. Una forma de hacerlo es a través de la polimerización, que es la unión consecutiva de pequeñas moléculas hasta formar una cadena. Es así que se construyó la molécula sintética más grande conocida: el poliestireno, la cual tiene la masa de 40 millones de átomos de Hidrógeno.

mcontentRecientemente Dieter Schlüter y colaboradores del Instituto Tecnológico de Zúrich, crearon la molécula sintética más grande conocida hasta ahora, desplazando de su trono al poliestireno. Su nombre es PG5, tiene la masa de 200 millones de átomos de Hidrógeno y mide aproximadamente 10 nm (0.00000001m). Bueno, sé que 10 nanómetros no es algo grande, pero a nivel molecular, lo es. En otras palabras, es tan grande como la cápside de un virus. En la figura podemos apreciar una comparación entre los tamaños del virus del mosaico del tabaco con la PG5. A diferencia de PG5, un virus está formado por miles de moléculas, como las glicoproteínas y ácidos nucleicos.

Los investigadores del Instituto Tecnológico de Zúrich llevaron la síntesis química al máximo, con varias rondas de polimerización para formar el esqueleto principal hecho a base de Carbono e Hidrógeno. Luego se le añadieron las demás moléculas a manera de ramas, entre ellas anillos bencénicos, compuestos nitrogenados y otros hidrocarburos. Y después se le añadió otras pequeñas moléculas a manera de sub-ramas. Finalmente se obtuvo una estructura similar a un árbol en otoño la cual requirió la formación de 170,000 enlaces químicos.

Esta molécula es tan grande, compleja y estable que puede cargar drogas en sus pliegues y formar enlaces químicos con muchos tipos de moléculas diferentes, lo cual la hace una buena candidata para el trasporte de nuevos agentes terapéuticos con una mayor especificidad.

Referencia:

Zhang, B., Wepf, R., Fischer, K., Schmidt, M., Besse, S., Lindner, P., King, B. T., Sigel, R., Schurtenberger, P., Talmon, Y., Ding, Y., Kröger, M., Halperin, A. and Schlüter, A. D. (2011), The Largest Synthetic Structure with Molecular Precision: Towards a Molecular Object. Angewandte Chemie. International Edition, 50: 737–740. doi: 10.1002/anie.201005164

Vía New Scientist.

Comentarios

Entradas más populares de este blog

La manifestación poco conocida de la tenia solitaria

En las profundidades del intestino delgado puede habitar un extraño huésped. Parece un fetuchini tan largo como una anaconda, pero dividido en decenas de pequeños segmentos llamados proglótides. Vive anclado a la pared intestinal por unos espeluznantes ganchos y ventosas que tiene en la cabeza (si así se le puede llamar a eso). No tiene boca porque se alimenta a través de la piel. Es la famosa tenia solitaria . Escólex de Taenia solium con cuatro ventosas y rostelo con ganchos. Fuente: CDC. Le llaman solitaria porque no necesita de una compañera (o compañero) para poder formar una familia. Son hermafroditas. Cada proglótido maduro tiene su propio suministro de óvulos y esperma, capaces de producir unos 60 000 huevos muy resistentes que son liberados a través de nuestras heces . Al menos seis segmentos llenos de huevos son liberados cada día por una persona infectada. Cuando los cerdos comen alimentos contaminados con heces humanas, común en algunas zonas de la sierra y selva del paí

¿Por qué tanto miedo al bromuro de etidio?

El bromuro de etidio (BrEt) es un agente químico muy usado en técnicas de biología molecular para teñir nuestros geles de agarosa y poder apreciar nuestras bandas de ADN; ya sean de los productos de extracción o de PCR. Existen dos formas de teñir los geles: i) remojando el gel de agarosa por 15 minutos en una bandeja con BrEt (0,5 mg/L) después de haber hecho la electroforesis o ii) añadiendo el BrEt directamente al gel al momento de prepararlo. Con la primera evitamos contaminar nuestra cámara de electroforesis con BrEt y con la segunda evitamos exponernos a salpicaduras y otros accidentes que pueden ocurrir al hacer la tinción en bandeja. Se han dado cuenta que desde que entramos a un laboratorio de biología molecular nos tienen traumados con el BrEt: "¡Cuidado que te salpique!", "¡no lo huelas!", "¡usa tres guantes!", "¡no es por ese lado!", "¡si te cae en la piel te va a dar cáncer y te puedes morir!", entre otras cosas más.

La citometría de masas, una novedosa técnica para estudiar las células individualmente

Los citómetros de flujo han sido una herramienta fundamental en el descubrimiento y caracterización de los diferentes tipos de células que conforman el sistema inmune. Esta técnica es tan poderosa que permite analizar más 10 parámetros simultáneamente, gracias al uso de anticuerpos marcados con moléculas fluorescentes. Sin embargo, la citometría de flujo parece haber llegado a su límite tecnológico, ya que cuando se pretende analizar más de 10 parámetros a la vez, la superposición de los espectros luminosos dificulta el análisis de los datos. Un grupo de investigadores norteamericanos y canadienses han mejorado la técnica gracias al uso de los principios de la espectrometría de masas según reportaron ayer en Science . De manera sencilla, la citometría de flujo consiste en el paso de una suspensión celular a través de un láser. Para que las células puedan ser detectadas y diferenciadas unas de otras, son marcadas con moléculas fluorescentes que se excitan cuando el rayo láser inci