Ir al contenido principal

¿Cómo entra el parásito de la malaria a los glóbulos rojos?

La malaria es uno de los más grandes problemas que aqueja a la salud pública mundial. Millones de personas en el mundo, principalmente en la zonas tropicales, son infectadas por este parásito cada año. El causante de esta enfermedad es un protozoario del género Plasmodium (principalmente P. falciparum) el cual es transmitido por la picadura de un mosquito. Cuando entra a nuestro torrente sanguíneo, en la etapa asexual de su ciclo de vida (merozoito), se adhiere e ingresa a los eritrocitos (glóbulos rojos) donde se divide y se disemina por todo el cuerpo, infectando a más eritrocitos y provocando los graves síntomas por los cuales se caracteriza la enfermedad.

Como la invasión del eritrocito es parte fundamental para desarrollo del ciclo de vida del parásito, las investigaciones hacia la búsqueda de nuevos agentes terapéuticos se están enfocando en este mecanismo. ¿Pero como se da? Gracias al uso de la microscopía electrónica, se han determinado las etapas de invasión del parásito en el eritrocito:

plasmodium

Como pueden ver, primero el merozoito se une a la superficie del eritrocito (1), luego se acomoda de tal manera que sus roptrias apunten hacia la membrana del eritrocito (2) y se forman las uniones oclusivas o "tight junctions" (3). Luego, la membrana celular del eritrocito se invagina, gracias a las enzimas liberadas por las roptrias, permitiendo el ingreso del parásito hacia una vacuola (4–9). Sin embargo, las imágenes capturadas con el microscopio electrónico sólo nos dan una visión superficial del proceso, pero no nos dicen nada acerca de las moléculas que podrían estar involucradas en el mismo.

plasmodiumFue así que investigadores australianos liderados por el Dr. David T. Riglar usaron los ensayos de inmunofluorescencia e iluminación estructurada 3D para relacionar estos eventos estructurales con los eventos moleculares. De esta manera pudieron registrar y entender cómo el mecanismo de ingreso de P. falciparum a los glóbulos rojos a nivel molecular. El trabajo fue publicado ayer en la revista Cell Host & Microbe.

Lo que hicieron Reglar et al. fue marcar —con una molécula fluorescente verde— una proteína envuelta en la formación de las uniones oclusivas. Esta proteína fue predicha a partir de su homólogo en otro parásito que invade los eritrocitos, la Toxoplasma gondii, causante de la toxoplasmosis.

Como se puede ver en la imagen, la proteína PfRON4 de P. falciparum es la responsable de formar las uniones oclusivas, luego forma una especie de anillo gracias a las enzimas secretadas por las roptrias, y por ahí penetra el merozoito, que es visualizado de color azul, que es una molécula fluorescente que se une al ADN. Con estas imágenes hicieron una reconstrucción en 3D.

Pero, ¿cómo hace el parásito para reconocer al eritrocito?  A nivel celular, todo reconocimiento se da bajo las proteínas específicas de superficie de membrana. Los eritrocitos poseen unas proteínas receptoras específicas que las diferencia de otro tipo celular. Entonces, P. falciparum debe tener una proteína capaz de reconocer los receptores de la superficie del eritrocito. Esta proteína es la PfAMA1 y se encuentran en los micronemos. Así que para que se de la infección, PfAMA1 y PfRON4 deben interactuar, una para reconocer y unirse a la superficie del eritrocito y el otro para crear las uniones oclusivas y abrir el anillo por donde entrará en parásito.

Así que, Reglar et al. esta vez marcaron a la PfAMA1 con una molécula fluorescente roja para ver como se relacionaba con PfRON4 (verde). Las imágenes de la microscopía fluorescente mostraron que PfAMA1 está ubicado directamente en el anillo de PfRON4, de esta manera se confirma que las dos proteínas forman un complejo que permite la invasión de merozoito al eritrocito. Para ser precisos, la PfAMA1 reconoce a las glicoporinas A, que son los receptores de superficie de los eritrocitos.


Como pueden ver, todo el proceso se da en menos de 10 minutos. Además, para determinar como se da este mecanismo de invasión paso a paso a nivel molecular, analizaron la función y la ubicación espacio-temporal de proteínas asociadas a las roptrias como la RAP1 y RESA.

Los investigadores también estudiaron que era lo que pasaba cuando usaban ciertos inhibidores. Por ejemplo, cuando usaban el péptido R1 se bloqueaba la formación del complejo PfRON4/PfAMA1, provocando que no se de las uniones oclusivas. Por otro lado, cuando usaban Citocalasina D, la cual se une a los filamentos de actina, se repimía su movilidad; o cuando usaban la molécula PMSF, la cual es una inhibidora de proteasa, el contenido de las roptrias eran liberadas de manera aberrante. Con todos estos datos, los investigadores propusieron el siguiente modelo: 
[Click para agrandar]
El uso de estos inhibidores indica que el proceso de invasión es irreversible, una vez que el merozoito hace el primero contacto con el eritrocito. Esto sería una gran ventaja al momento de diseñar agentes terapéuticos. Además, gracias a este conocimiento en detalle de la ubicación espacio-temporal de moléculas claves para el proceso invasivo de P. falciparum nos da una plataforma para poder probar estrategias que ayuden a bloquear este proceso y desarrollar vacunas que nos permitan combatir esta enfermedad que infecta a millones de personas cada año.

Referencia:

ResearchBlogging.orgRiglar, D., Richard, D., Wilson, D., Boyle, M., Dekiwadia, C., Turnbull, L., Angrisano, F., Marapana, D., Rogers, K., & Whitchurch, C. (2011). Super-Resolution Dissection of Coordinated Events during Malaria Parasite Invasion of the Human Erythrocyte Cell Host & Microbe, 9 (1), 9-20 DOI: 10.1016/j.chom.2010.12.003

Comentarios

  1. Si esta forma de penetrar de los merozoitos al GR es estandar, independiente de la Biometría Hemática del receptor.

    ResponderBorrar
  2. Gracias por la aclaración Luis.

    Saludos.

    ResponderBorrar
  3. David gracias por ayudar a divulgar este tipo de hallazgos relacionados con la malaria y el Plasmodium. Dos cosas: todavia no se conoce a que receptor sobre membrana del glóbulo rojo se une AMA. Riglar y cols. sugieren que es posible que sea RON4, pero en otros articulos muestran suficiente evidencia de que AMA se une a RON2 y si esta interacción no se da, no se lleva a cabo la invasión.
    La invasión no demora mas de un minuto y medio, si el merozoito no invade en ese tiempo se muere.

    ResponderBorrar

Publicar un comentario

Se respetuoso con tus comentarios y críticas. Cualquier comentario ofensivo será eliminado.

Entradas más populares de este blog

Ozono por el culo

La insuflación rectal de ozono , que en términos coloquiales es ozono por el culo  ( OxC , de forma abreviada), es una forma de ozonoterapia.  Según sus promotores , esta terapia "es muy potente en cuanto a la eliminación de gérmenes intestinales como virus, bacterias, protozoos, hongos, etc ". Incluso pidieron a la Organización Mundial de la Salud que lo usaran para el tratamiento del Ébola.  Según Ozonomédica , la ozonoterapia, en general, "es una eficaz alternativa en el tratamiento y control de muchas patologías y enfermedades crónicas" que incluso "puede retrasar o evitar la aparición de diabetes, cáncer, artritis, artrosis, entre otras". Paciente recibiendo OxC. Fuente: Ozonoterapia . Sin embargo,  de acuerdo con la Administración de Alimentos y Medicamentos de los Estados Unidos ( FDA ), el ozono es un gas tóxico sin alguna aplicación médica conocida . Si bien es cierto, el ozono nos protege de la peligrosa radiación ultravi

¿Cuál de los cromosomas X se inactiva en las hembras?

Si preguntamos en la calle ¿cuál es la principal diferencia entre un varón y una mujer?, seguramente las respuestas más frecuentes serán los senos, los órganos reproductores, la barba, la obsesión por los zapatos o por los videojuegos, entre otros.  Pero muy pocos —tal vez algunos biólogos que cayeron en la encuesta— dirán “¡los cromosomas sexuales!”. Y tendrían razón.  La diferencia más sustancial, a partir de la cual se originan todas las demás, son los cromosomas sexuales. En los mamíferos, las hembras tienen dos cromosomas X (XX) y los machos un cromosoma X y un cromosoma Y (XY). A pesar de ser chiquito, el cromosoma Y porta un gen esencial para lograr la diferenciación masculina. De no ser por él, prácticamente todos seríamos hembras, así tuviéramos solo un cromosoma X (X0) como en el Síndrome de Turner . Entonces, serán los machos quienes finalmente determinen el sexo de los hijos porque sus espermatozoides portarán o bien el cromosoma X o bien el cromosoma Y; mient

¿Por qué el tucán tiene un pico tan grande?

Los tucanes ostentan picos enormes y vistosos. Yo pensaba que era producto de la selección sexual, es decir, mejoraba sus chances de conseguir a una buena tucana con quien aparearse y heredar sus genes a la siguiente generación. Sin embargo, habían investigadores que creían que los enormes picos eran un horrible vestigio de algún ancestro primitivo. Pero la verdadera razón era otra según concluye un estudio publicado en Science . Los animales nos podemos catergorizar en dos tipos: los homeotermos (o endotermos) y los poiquilotermos (o ectotermos). Los homeotermos (aves y mamíferos) somos capaces de mantener una temperatura corporal constante (en nuestro caso 37ºC). Cualquier desvío abrupto podría generarnos problemas. Mientras que los poiquilotermos (reptiles) suelen tomar largas horas de sol para calentar su cuerpo y permitir que su metabolismo funcione correctamente. Los seres humanos, por ejemplo, para mantener una temperatura constante sudamos o quemamos nuestras reservas d