Ir al contenido principal

Se logra reconstruir el tejido intestinal humano in vitro

Uno de los grandes objetivos que tiene la biomedicina es lograr reconstruir cualquier tipo de órgano a partir de las células madre, sobre todo de las iPS (células madre pluripotente inducidas), para que de esta manera, el trasplante sea personalizado y  las probabilidades de presentarse algún tipo de incompatibilidad o reacción adversa sea reducida al mínimo. Sin embargo, éste es un trabajo sumamente difícil, ya que los mecanismos de formación de un tejido involucra la participación de muchas moléculas señalizadoras que activarán determinados genes y vías de diferenciación. Además, si queremos reconstruir un órgano, este tejido debe adquirir una estructura tridimensional, lo cual es mucho más complicado.

Fue así que investigadores liderados por el Dr. James Wells del Centro Médico del Hospital de Niños de Cincinnati, lograron reconstruir el tejido intestinal humano usando un tipo de células madre embrionarias (CME) e imitando los estadíos de su desarrollo. Gracias a este mecanismo, el tejido intestinal reconstruido tiene una estructura tridimensional, algo realmente sorprendente. Los resultados de la investigación fueron publicados ayer en Nature.

Primero, debemos saber de donde sale el tejido intestinal. Tal vez todos conocen las tres capas de las que está compuesto el embrión: el endodermo, mesodermo y ectodermo; conocidos como las capas germinales. El epitelio del tracto gastrointestinal nace del endodermo. Pero, no es que el endodermo así por así se transforme en intestino, necesita de una serie de moléculas señalizadoras y factores de transcripción. Además, el tracto gastrointestinal está dividido en tres: intestino anterior, medio y posterior, siendo los dos últimos el intestino propiamente dicho (intestinos delgado y grueso)

Primero, Wells et al. cultivó sus CME en un medio de cultivo con activina-A, una proteína de la familia de los factores de crecimiento transformante β (TGF-β), para promover la diferenciación de las CME en endodermo. Luego, para transformar estas células siguieron usando la activina-A por siete días y vieron si era capaz de diferenciar el endodermo en tejido intestinal. Bastó sólo con tres días para que el cultivo empiece a expresar los marcadores específicos del intestino anterior (albúmina (ALB) y PDX) y del intestino posterior (CDX2).

Pero, una cosa es que logren expresar los marcadores específicos del intestino anterior y posterior, y otra que el endodermo se diferencie y transforme en esos tejidos. Estudios previos habían demostrado que dos proteínas, el Factor de Crecimiento del Fibroblasto 4 (FGF4) y la WNT3A, inducían la diferenciación de las CME de pollos, ranas y ratones en tejido intestinal. Ninguna de las dos por sí solas lograron inducir la diferenciación de las CME humanas, así que Wells et al. usaron FGF4 y WNT3A de manera conjunta durante 96 horas y lograron expresar sólo el marcador CDX2 (intestino posterior). Ahora ya tenían las células del intestino posterior, pero no la morfología de un intestino de verdad. Pero, el mismo tratamiento con FGF4 y WNT3A, después de 2 a 5 días formaron tubos epiteliales compuestos de células esferoides (Flechitas negras en la figura).

epitelial

Luego, estas pequeñas esferoides fueron inoculadas en novedosos medios de cultivo tridimensionales y se dieron con la sorpresa que estas células empezaron a formar un intestino nuevo, tal como se desarrollan los intestinos en los fetos de ratones. Como pueden ver en la figura, después de 28 días, las células están diferenciadas y forman una estructura intestinal compleja. Las imágenes fueron obtenidas marcando con moléculas fluorescentes ciertas proteínas específicas del tejido intestinal posterior. Para tener un patrón con el cual comparar el desarrollo del intestino in vitro usaron fetos de ratones en los estadíos de desarrollo (e12.5 y e16.5).

development intestinal

Además, estas células diferenciadas tenían los sistemas de transporte de péptidos funcionales!, o sea, eran capaces de transportar moléculas importantes hacia el interior, lo cual es característico de los intestinos porque son los encargados de absorber todos los nutrientes que ingerimos en los alimentos. Wells et al. también pudieron estudiar las bases moleculares de la pérdida congénita de células endocrinas del intestino, un problema que aqueja a muchas personas en el mundo. El gen que codifica para la neurogenina-3 (NEUROG3) era el responsable, si era sobre-expresado, habían más células endocrinas en el intestino, mientras que si era reprimido, el tejido intestinal carecía de estas células.

En fin, este novedoso método de desarrollo de órganos in vitro puede ayudar a los investigadores a entender las bases moleculares de muchas enfermedades congénitas que afectan a casi todos los órganos de nuestro cuerpo, en este caso, al intestino. Además, dentro de los próximos años se podría generar tejidos intestinales para tratar enfermedades como la enterocolitis necrótica o el síndrome del intestino corto.

Referencia:

ResearchBlogging.orgSpence, J., Mayhew, C., Rankin, S., Kuhar, M., Vallance, J., Tolle, K., Hoskins, E., Kalinichenko, V., Wells, S., Zorn, A., Shroyer, N., & Wells, J. (2010). Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro Nature DOI: 10.1038/nature09691

Comentarios

Entradas más populares de este blog

15 años más de moratoria a los transgénicos

Ese es el nuevo proyecto de ley (PL 05622/2020-CR) presentado el pasado 25 de junio por el congresista Rolando Campos Villalobos de Acción Popular, el cual tiene por único objetivo ampliar por quince años la moratoria a los transgénicos establecida por la Ley N.º 29811, que vence en diciembre del próximo año. 

Para aclarar, la moratoria sólo se aplica a la liberación al ambiente, es decir, los cultivos transgénicos. Los importados para la alimentación humana o de animales (por ejemplo, el maíz amarillo duro y la soya), no están restringidos ni regulados hasta que se apruebe el RISBA. Tampoco se prohíbe la investigación con transgénicos, pero solo si se realiza en espacios confinados como laboratorios o invernaderos. ¿Cuál es el sustento para ampliar la moratoria?Para saberlo, analicemos la exposición de motivos. Ley de moratoria se sustenta en la necesidad de preservar el ambiente equilibrado del país, dado que existe una incertidumbre sobre los impactos que pueden producir los transgéni…

Los huevos verdes

[Artículo publicado originalmente el 16 de abril de 2014 en Expresión Genética del diario El Comercio]
No me refiero a los de Shrek ni los de Hulk...
Hace unos años visité la localidad de Huancapallac, en el departamento de Huánuco, y participé del Muhu Raymi (Fiesta de las Semillas). En esta feria, agricultores de diferentes lugares del país exhiben su gran agrobiodiversidad. Mientras paseaba por los puestos de cada uno de ellos, vi algo que llamó mi atención: huevos de color verde.

Si bien los huevos pueden adquirir diferentes colores, dependiendo de la especie a la que correspondan, todos los huevos de gallina que encontramos en los mercados son blancos o morenos (color piel). Sin embargo, al menos tres razas de gallinas ponen huevos verdes y azulados: la Araucana de Chile y los Dongxiang y Lushi de China. Esta coloración se debe a un pigmento llamado biliverdina.
La biliverdina se genera a partir de la degradación de la hemoglobina —molécula que da el característico color rojo a la sa…

El asesino en serie de los anfibios bajo la mira

Los anfibios del mundo están viviendo un verdadero apocalipsis. Poblaciones enteras están siendo diezmadas. Algunas especies se han extinto y otras están seriamente amenazadas. Y, como en una verdadera película de terror, un patógeno es el responsable, posiblemente, el peor de toda la historia en cuanto a su impacto sobre la biodiversidad. Su nombre, Batrachochytrium dendrobatidis (de cariño Bd). ¿Dónde y cuando apareció este asesino? ¿Cómo se propaga? Son algunas de las interrogantes que pretende resolver un estudio publicado en Science la semana pasada.

Bd es un hongo que ataca directamente la piel de los anfibios (que es por donde estos animales respiran, intercambian electrolitos y regulan el pH), alimentándose de las proteínas que la componen. La piel alrededor de las articulaciones se hace trizas y se desprende hasta que pierden el equilibrio homeostático del cual no pueden recuperarse. Al cabo de unos días, mueren de un ataque cardiaco.

Este problema fue detectado por primera v…