Ir al contenido principal

Qué pasaría si todos los elementos de la tabla periódica los mezclamos?

Llegó el fin de semana, así que es día de hablar de cosas más curiosas. ¿Alguna vez se hicieron esa pregunta?… El de combinar a todos los elementos químicos en un mismo lugar para obtener una súper-molécula o una molécula tipo Frankestein. La verdad es algo muy difícil de hacer, no basta con coger todos los elementos y ponerlos dentro de una caja para después agitarla y así forzarlos a mezclarse y que formen enlaces. Dependerá mucho de la cercanía de los átomos y sus reactividades.

Por ejemplo, el Oxígeno es un elemento muy reactivo, si se encuentra con un Carbono formará el monóxido de carbono (CO), si se encuentra con un Hidrógeno formará un hidróxido, o sea, cada mezcla que hagas te dará un compuesto diferente, nunca obtendrás la misma porque dependerá del azar qué átomo se encuentra más cerca a otro, y si este es capaz de reaccionar con él. Otro inconveniente es que el nitrógeno es un gas inerte, y no tiende a reaccionar con nada, lo mismo ocurre con los gases nobles.

Entonces, si no quieren por las buenas que les parece por las malas.

Elevamos la temperatura de tal manera que todos los elementos se encuentren en su estado gaseoso y los metemos dentro de un recipiente. La energía cinética de los elementos en estado gaseoso favorecerá los choques entre ellos y la formación de enlaces y reacciones. Nadie ha intentado hacer este experimento antes, por ser algo peligroso. El Oxígeno con el Potasio o el Litio reaccionan de manera explosiva, provocando una ignición y el fin del experimento. Además, recordemos que los elementos químicos a partir del Radio (Z=88) empiezan a ser radiactivos; la mezcla gaseosa e incandescente, sería además, radiactiva! Si llegamos a aspirar ese gas, díganle adiós a su vida, o por lo menos, digan bienvenido al cáncer de pulmón. Además, encender Plutonio no sería una muy buena idea ya que este elemento es el principal combustible de las bombas nucleares.

Y que tal si usamos un acelerador de partículas y las hacemos colisionar a todas juntas en un punto, ¿crearíamos un frankestein-átomo? En primer lugar necesitaríamos un LHC para acelerar cada uno de los átomos al 99.99% de la velocidad de la luz, y luego hacer que los átomos acelerados por los 108 LHC sean colisionados en un sólo punto. Pero, según el químico teórico Mark Tuckerman sólo obtendríamos una masa plasmática de quarks (partículas que conforman los protones y neutrones) y gluones (partícula elemental que porta la energía de interacción nuclear fuerte, o sea la que pega los quarks para formar los protones y neutrones)

En conclusión, sería un escenario sumamente aburrido, donde lo único que obtendremos es una mezcla de CO2, gases nobles y Nitrógeno (todos ellos imperceptibles) y un precipitado de metales en sus estados puros, a lo mucho algunas sales de ellos, o sea, un poco de tierra.

Vía PopSci.

Imagen: Flickr (@stokoe)

Comentarios

  1. Hola!soy estudiante de biotecnologia. Averiguando sobre el tema de las bacterias que pueden vivir con arsenico encontre tu blog. Lo estuve ojeando y realmente me entretuve leyendo lo que has publicado. Esta publicacion, por ejemplo, estuvo muy interesante! Te agradezco tus interesantes notas

    ResponderBorrar
  2. Interesante aporte!! no me lo había preguntado..

    ResponderBorrar

Publicar un comentario

Se respetuoso con tus comentarios y críticas. Cualquier comentario ofensivo será eliminado.

Entradas más populares de este blog

¿Qué fue del estudio más grande sobre la seguridad de los transgénicos?

La tarde del 11 de noviembre de 2014, en un hotel londinense, se anuncia el lanzamiento de "Factor GMO", el experimento a largo plazo más extenso y detallado jamás realizado sobre un alimento transgénico y su plaguicida asociado.


Con un costo estimado de 25 millones de dólares, el estudio buscaba aportar —con una solidez sin precedentes— valiosa información para permitir a las autoridades reguladoras, los gobiernos y la población general, responder si es seguro el consumo de Organismos Genéticamente Modificados (OGM) o la exposición a su herbicida asociado en condiciones reales.

El experimento —que se llevaría a cabo en un laboratorio secreto en el territorio ruso para evitar cualquier injerencia externa— consistía en someter a 6.000 ratas de laboratorio a diversas dietas basadas en el maíz transgénico NK603 y su herbicida asociado (RoundUp), cuyo principio activo es el glifosato. Es similar al famoso estudio realizado Guilles-Eric Seralini, pero a mayor escala. Solo para re…

¿Por qué tanto miedo al bromuro de etidio?

El bromuro de etidio (BrEt) es un agente químico muy usado en técnicas de biología molecular para teñir nuestros geles de agarosa y poder apreciar nuestras bandas de ADN; ya sean de los productos de extracción o de PCR. Existen dos formas de teñir los geles: i) remojando el gel de agarosa por 15 minutos en una bandeja con BrEt (0,5 mg/L) después de haber hecho la electroforesis o ii) añadiendo el BrEt directamente al gel al momento de prepararlo. Con la primera evitamos contaminar nuestra cámara de electroforesis con BrEt y con la segunda evitamos exponernos a salpicaduras y otros accidentes que pueden ocurrir al hacer la tinción en bandeja.


Se han dado cuenta que desde que entramos a un laboratorio de biología molecular nos tienen traumados con el BrEt: "¡Cuidado que te salpique!", "¡no lo huelas!", "¡usa tres guantes!", "¡no es por ese lado!", "¡si te cae en la piel te va a dar cáncer y te puedes morir!", entre otras cosas más.

Si b…

X Edición del Carnaval de Química

La química está en todo. Cada célula no es más que una maquinaria que funciona a base de reacciones químicas. Las enzimas son esas “cosas mágicas” que transforman una molécula en otra. ¿Cómo lo hacen?. Simplemente haciendo un reordenamiento de enlaces. Los fármacos, por su parte, son moléculas que reordenan los enlaces de las enzimas para inactivarlas. Todos los estímulos del entorno son transformados en señales químicas en el sistema nervioso. La mayoría de los objetos que nos rodean están hechos de algún tipo de polímero y muchos de ellos son sintéticos, por ejemplo: el plástico (poli-etileno) o la silicona (poli-dimetil-siloxano). Y pensar que todo lo que nos rodea proviene del Hidrógeno, los átomos más simples y los primeros en formarse después del Big Bang. Los átomos más pesados como el Oxígeno, Carbono o Fósforo, fundamentales para la vida, son generados por reacciones nucleares en estrellas y supernovas. Otros son generados aquí en la Tierra, en grandes aceleradores de partícu…