Ir al contenido principal

La concha invertida de un caracol, lo salva de ser devorado

Muchos conocen a los caracoles, seguro los han visto es sus jardines o en sus patios después de una lluvia. Si los han visto detenidamente y se han puesto a analizar su caparazón (para los moluscos: concha), se habrán podido percatar que la forma como se enrosca es en sentido horario, los círculos espirales crecen del centro hacia la derecha (diestros).

Sin embargo, algunas especies de caracoles terrestres del género Satsuma tienen conchas que se enroscan en el sentido contrario (zurdos). Tal vez, a simple vista no parece ser un gran cambio, pero este “pequeño”cambio trae consigo grandes implicancias evolutivas y adaptativas según reportaron hoy Hoso et al. en la revista Nature Communications.

En primer lugar, la inversión de la dirección en la que se enrosca su concha se debe a la acción del cambio en un sólo gen nuclear. Esta inversión trae graves consecuencias al momento de aparearse. Es muy poco probable que un zurdo se pueda aparear con un diestro debido a la ubicación de sus órganos genitales. Esta incompatibilidad al momento de aparearse le genera un grave problema, ya que la gran mayoría de caracoles son diestros, y al no poder generar descendencia, la variante de caracoles zurdos se perdería – tal como el alelo del gen responsable – debido a la deriva génica. Por otro lado, la incompatibilidad reproductiva es la principal fuerza que guía a la especiación de un organismo a través del aislamiento reproductivo, los caracoles zurdos se aparearán con otros caracoles zurdos, generando una nueva especie de caracoles zurdos.

Pero, ¿cuál es la explicación para que este alelo mutante se haya fijado en la población de caracoles? Si recordamos un poco de genética evolutiva, un alelo mutante se puede llegar a fijar en una población gracias a la selección natural positiva, o sea, que ese mutante le genere algún tipo de ventaja adaptativa con respecto al alelo normal. Esta interrogante fue resuelta gracias a que los investigadores descubrieron que uno de sus principales predadores, las serpientes asiáticas de la familia Pareatidae, no pueden comer a los caracoles con conchas zurdas.

Los investigadores observaron que, por ejemplo, la pareátida japonesa P. iwasakii, debido a la predominancia de caracoles diestros, han desarrollado su mandíbula asimétrica de tal manera que les facilite acceder y devorar el cuerpo blando del caracol, a través del orificio de sus conchas; sin embargo, esta especialización de sus mandíbulas no les permite comer a los caracoles con los conchas zurdas ya que están al revés. Es como ponerse el guante de la mano izquierda en la derecha, se podrá, pero será sumamente incómodo o difícil que preferirás no hacerlo. Ver: Video #1 (caracol diestro Vs serpiente) y Video #2 (caracol zurdo Vs serpiente).

Esta ventaja le ha permitido a este caracol poder contrarrestar los efectos de la deriva génica mediante la selección natural positiva. Además, al hacer un estudio filogenético, observaron que el tipo de caracoles zurdos han evolucionado a partir de los caracoles diestros al menos en seis ocasiones diferentes dentro de la historia evolutiva del género Satsuma, y que la presencia de caracoles zurdos está directamente relacionado con las regiones donde las serpientes pareátidas son más abundantes.

Las líneas rojas corresponden a los caracoles zurdos.

Este estudio nos muestra los principales conceptos de la genética evolutiva en un mismo lugar. Empezando por el aislamiento reproductivo, la deriva génica y la selección natural; así como la adaptación y la especiación. Así que, si bien tienen una desventaja al momento de reproducirse, su número poblacional no se ve reducido debido a la depredación. Además, este estudio aviva las ideas planteadas por Richard Goldschmidt y su teoría del monstruo prometedor, la cual ha sido rechazada y ridiculizada por muchos biólogos evolutivos.

Referencia:

ResearchBlogging.orgHoso, M., Kameda, Y., Wu, S., Asami, T., Kato, M., & Hori, M. (2010). A speciation gene for left–right reversal in snails results in anti-predator adaptation Nature Communications, 1 (9) DOI: 10.1038/ncomms1133

Imagenes: ©Nature Communications & NERS.

Comentarios

Publicar un comentario

Se respetuoso con tus comentarios y críticas. Cualquier comentario ofensivo será eliminado.

Entradas más populares de este blog

Algodón rosa

La mayoría de las personas dan por hecho que el algodón es blanco. Lo vemos así en hisopos, rollos y torundas. Sin embargo, existen de diversos colores, especialmente, en Perú. Marrón, crema, pardo, verde, son algunos de ellos. Como esos algodones no se pueden teñir, la industria textil optó por las variedades de fibra blanca. Muestras de algodón de color. Fuente: Ing. Patricia Ocampo. En la actualidad hay una mayor concienciación por los impactos ambientales que generan los productos que consumimos. La ropa es una de ellas. Los tintes empleados generan contaminación de los cuerpos de agua. En ese contexto, los algodones pigmentados adquieren mayor relevancia, aunque la variedad de colores existentes es muy limitada. La naturaleza tiene infinidad de colores. Un claro ejemplo son las flores: amarillas, azules, rosadas, violetas, rojas y más. Cada pigmento es producido por diversas enzimas que catalizan reacciones químicas para que una molécula se convierta en otra. Por ejemplo, la tiros

Ozono por el culo

La insuflación rectal de ozono , que en términos coloquiales es ozono por el culo  ( OxC , de forma abreviada), es una forma de ozonoterapia.  Según sus promotores , esta terapia "es muy potente en cuanto a la eliminación de gérmenes intestinales como virus, bacterias, protozoos, hongos, etc ". Incluso pidieron a la Organización Mundial de la Salud que lo usaran para el tratamiento del Ébola.  Según Ozonomédica , la ozonoterapia, en general, "es una eficaz alternativa en el tratamiento y control de muchas patologías y enfermedades crónicas" que incluso "puede retrasar o evitar la aparición de diabetes, cáncer, artritis, artrosis, entre otras". Paciente recibiendo OxC. Fuente: Ozonoterapia . Sin embargo,  de acuerdo con la Administración de Alimentos y Medicamentos de los Estados Unidos ( FDA ), el ozono es un gas tóxico sin alguna aplicación médica conocida . Si bien es cierto, el ozono nos protege de la peligrosa radiación ultravi

Fusión y fisión de mitocondrias

Se cree que los procariotas aparecieron en el planeta hace unos 3,500 millones de años, mientras que los eucariotas lo hicieron hace unos 2,000 millones de años. Pero, si los procariotas llevan una ventaja de 1,500 millones de años a los eucariotas, ¿por qué ellos no son los organismos más complejos? La respuesta son las mitocondrias [Les recomiendo leer este artículo publicado en el blog]. Todos conocemos a las mitocondrias, si no las recuerdan, aquí se las presento. Tal vez la imagen que tenemos de ellas es que se encuentran diseminadas por toda la célula, aisladas unas de otras o, a lo mucho, reuniéndose en pequeños grupos. Sin embargo, esto no es así. En realidad, las mitocondrias son unos organelos muy dinámicos, que se encuentran fusionándose y dividiéndose constantemente, pero hasta ahora no se sabe a ciencia cierta que rol cumple este proceso. Axel Kowald de la Universidad Humboldt de Berlín y Tom B. L. Kirkwood de la Universidad de Newcastle han desarrollado una teoría