Ir al contenido principal

La reactivación de la telomerasa podría revertir el envejecimiento?

Nuestro genoma, de aproximadamente 3200 millones de pares de base, está dividido en 23 pares de cromosomas, los cuales tienen distintas longitudes. Al momento de replicar el ADN, una de las cadenas no es replicada completamente porque la enzima ADN polimerasa sólo trabaja en una dirección (5' => 3') y para poder completar la cadena retrasada (donde se forman los fragmentos de Okazaki) debería trabajar en la dirección 3' => 5', lo cual es imposible. Es por esta razón que se genera el problema de la terminación de la replicación, y los cromosomas se van acortando a medida que las células se van dividiendo.

Una solución a este problema es la presencia de los telómeros, que son repeticiones de seis nucleótidos (TTAGGG) de una longitud variable —dependiendo del tipo de célula— que protegen a los cromosomas de la pérdida de valiosa información genética. Los telómeros también se acortan con cada división de la célula, pero protegerán a los cromosomas por un tiempo suficientemente largo como para que el organismo leve una vida tranquila.

Cuando envejecemos, nuestros telómeros son tan cortos que activan el mecanismo de muerte celular programada (apoptosis). A medida que van muriendo nuestras células, los órganos empiezan a fallar y vienen los famosos achaques de la vejez, hasta que finalmente nos llega la muerte.

En el año 1980 se descubrió una enzima llamada telomerasa que era capaz de regenerar los telómeros y mantenerlos largos generación tras generación. Fue este descubrimiento el que hizo pensar a muchos científicos que al fin habían encontrado “la fuente de la eterna juventud”. 

Sin embargo, esta enzima sólo está activa en las células madre, células germinales (productoras de óvulos y espermatozoides) y en los tejidos fetales, y se inactiva a medida que nos desarrollamos.

¿Si podríamos reactivar la telomerasa en las personas adultas, seríamos capaces de revertir, o por lo menos, detener el proceso de envejecimiento? Mariela Jaskelioff y colaboradores de la Escuela de Medicina de Harvard trataron de responder esta pregunta usando ratones con la enzima telomerasa inactiva. Sus resultados fueron publicados hoy en Nature.

Lo primero que hicieron Jaskelioff y su equipo fue diseñar ratones carentes de telomerasa usando ingeniería genética. Como era de esperarse, estos ratones envejecieron de manera más rápida. Además, eran apenas fértiles y sufrieron de problemas relacionados con la vejez tal como la osteoporosis, diabetes y enfermedades neurodegenerativas de manera pronta. 

Sin embargo, esto no era algo nuevo. Ya se sabía desde hace varios años que la carencia de telomerasa era un importante instigador en el proceso de envejecimiento.

Para demostrar que la reactivación de la telomerasa podría revertir este efecto, diseñaron un ratón que tenía inactiva la telomerasa a menos que se le diera una molécula activadora llamada 4-OHT (4-hidroxitamoxifen). De esta manera, pudieron desarrollar un ratón hasta la adultez con la telomerasa inactiva, y recién en ese momento someterlo a un tratamiento con 4-OHT para reactivar dicha enzima y ver si de alguna manera se revertía el efecto del envejecimiento.

image
Telómeros regenerados en presencia del inductor 4-OHT. Azul: ADN, Verde: telómeros

Cuando sometieron a los ratones adultos al tratamiento con 4-OHT durante un mes observaron que los efectos del envejecimiento fueron revertidos: los animales recuperaron su fertilidad, los órganos como los riñones, el hígado y los intestinos se recuperaron de un estado degenerado, y los cerebros volvieron a tener un tamaño superior que en aquellos ratones carentes de telomerasa.

Sin embargo, hay muchos estudios que han demostrado que la telomerasa también se encuentra activa y mutada en muchas células cancerígenas y tumorales. Es por esta razón que estas células se dividen continuamente sin llegar a envejecer nunca. Esto podría ser contradictorio si consideramos que las telomerasas también previenen que las células se vuelvan cancerígenas ya que protegen a los cromosomas de la fusión de sus extremos con otros cromosomas a través del mantenimiento de la longitud de los telómeros. 

Todo debe tener un equilibrio. Si se demuestra que la reactivación de la telomerasa no podría generar un cáncer sería un buen tratamiento para aquellas personas que sufren de enfermedades extrañas como la progeria, donde se da un envejecimiento prematuro en los niños afectados.

Otros científicos cuestionan este trabajo porque se preguntan hasta que punto los ratones pueden ser buenos modelos para simular los mecanismos celulares en humanos. Que funcione de cierta manera en los ratones no garantiza que lo haga en humanos, pero sí sería un buen punto de partida. 

Otra cosa que debe también tomarse en cuenta es saber qué factores más promueven el envejecimiento, a parte de la reducción de los telómeros. Todavía no está entendido al 100% este proceso y faltaría mucho por investigar.

Referencias:

Jaskelioff, M. et al. 2010. Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature. doi: 10.1038/nature09603.

Nature News. doi: 10.1038/news.2010.635

Comentarios

  1. ojala lo puedan aplicar pronto..no me disgustaria vivir unos 200 años..jajaja

    ResponderEliminar

Publicar un comentario

Se respetuoso con tus comentarios y críticas. Cualquier comentario ofensivo será eliminado.

Entradas más populares de este blog

Pruebas rápidas y moleculares para COVID-19

Desde que se anunció la adquisición de más de un millón de "pruebas rápidas" para detectar personas con COVID-19, a fines de marzo, estuvieron en el ojo de la tormenta. Diversos científicos se manifestaron a favor o en contra de ellas, tanto en televisión como en redes sociales. El público general también tomó posición, más basada en simpatías políticas que en ciencia. Aquí les hago un resumen para entender de qué va todo esto.
Definamos conceptos "Pruebas moleculares" es un nombre genérico empleado para referirnos a los análisis basados en ácidos nucleicos, que puede ser de ADN o ARN. Por ejemplo, una prueba de paternidad es una prueba molecular. Se analiza el ADN del presunto padre y del hijo(a), para ver si comparten los mismos marcadores genéticos (fragmentos de ADN que son heredados). En el caso del coronavirus (SARS-CoV-2), la prueba molecular detecta marcadores genéticos en su ARN (otra molécula que también puede codificar la información genética).

La prueb…

¿Qué fue del estudio más grande sobre la seguridad de los transgénicos?

La tarde del 11 de noviembre de 2014, en un hotel londinense, se anuncia el lanzamiento de "Factor GMO", el experimento a largo plazo más extenso y detallado jamás realizado sobre un alimento transgénico y su plaguicida asociado.


Con un costo estimado de 25 millones de dólares, el estudio buscaba aportar —con una solidez sin precedentes— valiosa información para permitir a las autoridades reguladoras, los gobiernos y la población general, responder si es seguro el consumo de Organismos Genéticamente Modificados (OGM) o la exposición a su herbicida asociado en condiciones reales.

El experimento —que se llevaría a cabo en un laboratorio secreto en el territorio ruso para evitar cualquier injerencia externa— consistía en someter a 6.000 ratas de laboratorio a diversas dietas basadas en el maíz transgénico NK603 y su herbicida asociado (RoundUp), cuyo principio activo es el glifosato. Es similar al famoso estudio realizado Guilles-Eric Seralini, pero a mayor escala. Solo para re…

Cuando los antioxidantes promueven el cáncer

Hemos comentado muchas veces que las Especies Reactivas del Oxígeno (ROS, por sus siglas en inglés) están involucrados con el envejecimiento y con el desarrollo del cáncer. Esto se debe a que los ROS son altamente reactivos, por lo tanto, son capaces de dañar el ADN generando mutaciones. Por suerte existen los antioxidantes, quienes son los encargados de atrapar los ROS y mantenerlos en niveles que no generen daño alguno. Sin embargo, un grupo internacional de investigadores liderados por la Dra. Gina DeNicola del Instituto de Investigaciones de Cambridge revelaron que el factor de transcripción encargado de activar los genes que nos protegen de los ROS, también puede favorecer el desarrollo de ciertos tumores según un artículo publicado ayer en Nature.Normalmente, cuando las células son sometidas a un estrés fisiológico o sufren de algún tipo de daño genético, se activan una serie de genes y factores de transcripción que, de manera coordinada, regulan el funcionamiento de la célula, …