Ir al contenido principal

Halaven®, un triunfo de la síntesis química para el tratamiento del cáncer de mama

Una nueva droga para el tratamiento del cáncer de mama ha sido aprobada este mes por la FDA (US Food and Drug Administration). Se trata del Halaven® (Mesilato de eribulina), que hasta hace poco se encontraba en la fase III de sus ensayos clínicos, y que finalmente fue aprobada para su comercialización, el 15 de noviembre pasado.

Han sido 25 años de arduo trabajo para desarrollar esta droga, pero, ¿por qué tanto tiempo? Todo empezó en el año 1986 con el descubrimiento de la halicondrina B,  un potente antitumoral producido por una esponja marina llamada Halichondria okadai. El problema era que este compuesto estaba presente en muy bajas concentraciones, haciéndolo difícil de aislar y determinar su estructura química, que es lo principal para entender el funcionamiento de la molécula.

Algunos años después, el químico orgánico Yoshito Kishi de la Universidad de Harvard estaba decidido a determinar la estructura química de este compuesto, aunque su principal motivación no era la propiedad anticancerígena de la halicondina B, sino, la búsqueda de una molécula compleja para probar una reacción química que había diseñado junto a otros colegas, para formar enlaces entre átomos de carbono y así poder sintetizar, de manera química, cualquier molécula orgánica.

Los productos naturales generalmente presentan estereocentros de carbono, los cuales forman estereoisómeros (mismos enlaces átomo-átomo, pero distinta ubicación tridimensional). La disposición de los átomos y los grupos funcionales dentro de la molécula, serán los que determinen su función farmacológica.

Sin dudas fue un gran reto ya que esta molécula tenía 32 estereocentros de carbono, lo cual indicaba que podía tener más de 4000 millones de formas posibles (232), siendo sólo una de ellas la que tenía la actividad antitumoral. Fue hasta el año 1992 en que finalmente Kishi et al. pudieron determinar la estructura de la halicondrina B.

Imagen: FAO

Luego, investigadores de la División de Productos Naturales del Instituto Nacional del Cáncer de los Estados Unidos (NCI), descubrieron que la actividad antitumoral de la halicondrina B se debía a que esta molécula era un inhibidor de la tubulina (una de las proteínas del citoesqueleto), tal como lo hace el Taxol®. La tubulina es una proteína indispensable para el rápido crecimiento y mutiplicaicón de las células cancerígenas.

Sin embargo, si bien se pudo identificar a qué se debía su actividad antitumoral, no se podían llevar a cabo las primeras fases de los ensayos clínicos por la pequeñísima cantidad de halicondrina B que se podía extraer de las esponjas. Fue así que el Dr. David Newman, viajó hasta Nueva Zelanda y capturó más de una tonelada de Lissodendoryx, otro tipo de esponja que también produce la preciada halicondrina B. Adivinen cuanta cantidad de halicondrina B lograron aislar de una tonelada de esponjas…. Tan sólo 300mg… :(

Entonces, la única solución que veían era la síntesis química de algún análogo de la halicondrina B. Fue así que, usando el método desarrollado por Kishi, sintetizaron una serie de análogos, y usaron esos 300mg para comparar las actividades farmacológicas de los nuevos análogos producidos con el original. Uno de ellos fue la eribulina.

Esta molécula sólo tenía 19 estereocentros de carbono a diferencia de los 32 de la halicondrina B. aún así, la producción a gran escala de este análogo era inconcebible. El análogo requería de nada menos que 62 pasos para sintetizarla, un proceso sumamente largo para un producto que quiere ser comercializado. Sin embargo, decidieron producirla y probarla. Una vez obtenido los resultados del ensayo clínico de fase I, observaron que este análogo era seguro y tenía un gran potencial clínico. Fue así que decidieron continuar con el proyecto.

Los ensayos clínicos posteriores demostraron que la eribulina extendía la esperanza de vida de los pacientes con cáncer de seno terminal en un promedio de 2.5 meses, con respecto a los que se beneficiaban de otras quimioterapias como la del Taxol®. Los analistas señalaron que si la eribulina lograba ser aprobada  y ser usada en otros tipos de cáncer, podría generar ingresos que superarían los 1000 millones de dólares.

Sin embargo, durante los los fines de los 90’s, casi todas las empresas farmacéuticas dejaron de lado la búsqueda de principios activos naturales y se enfocaron en el uso de largas librerías de compuestos químicos sintéticos para la búsqueda de nuevas drogas con potenciales propiedades farmacológicas. Este nuevo método hoy es conocido como el tamizaje de alto rendimiento (high throughput screening).

Pero, los que continuaron con el estudio y mejora de la eribulina, hoy vieron los frutos de su arduo trabajo y ha sido un gran logro y victoria para la síntesis química de productos naturales. Así que, nada desarrollado de manera artificial podrá superar lo que podemos encontrar de manera natural. Debemos seguir investigando los principios activos que nos ofrece la naturaleza y buscar la forma de producirlos a gran escala, ya sea por síntesis química o por biotecnología.

Vía Nature News.

Comentarios

Entradas más populares de este blog

La manifestación poco conocida de la tenia solitaria

En las profundidades del intestino delgado puede habitar un extraño huésped. Parece un fetuchini tan largo como una anaconda, pero dividido en decenas de pequeños segmentos llamados proglótides. Vive anclado a la pared intestinal por unos espeluznantes ganchos y ventosas que tiene en la cabeza (si así se le puede llamar a eso). No tiene boca porque se alimenta a través de la piel. Es la famosa tenia solitaria . Escólex de Taenia solium con cuatro ventosas y rostelo con ganchos. Fuente: CDC. Le llaman solitaria porque no necesita de una compañera (o compañero) para poder formar una familia. Son hermafroditas. Cada proglótido maduro tiene su propio suministro de óvulos y esperma, capaces de producir unos 60 000 huevos muy resistentes que son liberados a través de nuestras heces . Al menos seis segmentos llenos de huevos son liberados cada día por una persona infectada. Cuando los cerdos comen alimentos contaminados con heces humanas, común en algunas zonas de la sierra y selva del paí

¿Por qué tanto miedo al bromuro de etidio?

El bromuro de etidio (BrEt) es un agente químico muy usado en técnicas de biología molecular para teñir nuestros geles de agarosa y poder apreciar nuestras bandas de ADN; ya sean de los productos de extracción o de PCR. Existen dos formas de teñir los geles: i) remojando el gel de agarosa por 15 minutos en una bandeja con BrEt (0,5 mg/L) después de haber hecho la electroforesis o ii) añadiendo el BrEt directamente al gel al momento de prepararlo. Con la primera evitamos contaminar nuestra cámara de electroforesis con BrEt y con la segunda evitamos exponernos a salpicaduras y otros accidentes que pueden ocurrir al hacer la tinción en bandeja. Se han dado cuenta que desde que entramos a un laboratorio de biología molecular nos tienen traumados con el BrEt: "¡Cuidado que te salpique!", "¡no lo huelas!", "¡usa tres guantes!", "¡no es por ese lado!", "¡si te cae en la piel te va a dar cáncer y te puedes morir!", entre otras cosas más.

La citometría de masas, una novedosa técnica para estudiar las células individualmente

Los citómetros de flujo han sido una herramienta fundamental en el descubrimiento y caracterización de los diferentes tipos de células que conforman el sistema inmune. Esta técnica es tan poderosa que permite analizar más 10 parámetros simultáneamente, gracias al uso de anticuerpos marcados con moléculas fluorescentes. Sin embargo, la citometría de flujo parece haber llegado a su límite tecnológico, ya que cuando se pretende analizar más de 10 parámetros a la vez, la superposición de los espectros luminosos dificulta el análisis de los datos. Un grupo de investigadores norteamericanos y canadienses han mejorado la técnica gracias al uso de los principios de la espectrometría de masas según reportaron ayer en Science . De manera sencilla, la citometría de flujo consiste en el paso de una suspensión celular a través de un láser. Para que las células puedan ser detectadas y diferenciadas unas de otras, son marcadas con moléculas fluorescentes que se excitan cuando el rayo láser inci