Ir al contenido principal

Un protector molecular del transcriptoma

El genoma comprende todo el material genético de un organismo, pero, bien se sabe que no todo el ADN es transcrito a ARN y no todo el ARN es traducido a proteínas. Es así que nacieron dos nuevas líneas de investigación importantes en el campo de la biología molecular: la transcriptómica, que comprende todo el ARN mensajero que ha sido transcrito a partir del ADN; y la proteómica, que comprende a todas las proteínas que han sido traducidas a partir del ARN mensajero.

Sin embargo, el proceso de expresión genética no es simplemente pasar el ADN a ARN y luego traducirlo a proteína. Hay mucho ARN que nunca llega a ser proteína, y aún así, cumple funciones importantes en la regulación de la expresión genética. Ejemplos: el ARN de interferencia o los microARNs. No sólo eso, en eucariotas – como los animales y las plantas – el ADN es transcrito primero a un pre-ARN mensajero, el cual posee muchas secuencias que no llegarán a traducirse a proteínas y tendrán que ser eliminadas. Una vez que el ARN mensajero elimina estas secuencias no codificantes (intrones) se convierte en un ARN mensajero maduro, conformado sólo por secuencias que sí llegarán a traducirse a proteína (exones). Tanto el pre-ARN y el ARN mensajero maduro conservan dos elementos protectores contra el ataque de enzimas que degradan el ARN (RNAsa), en el extremo 5’ tienen una capucha de 7-metilguanosina y en el extremo 3’ una cola de muchas Adeninas (polyA).

splicing

La imagen es más que explícita. El proceso mediante el cual el pre-ARN mensajero es procesado se llama Splicing. El Splicing se lleva a capo gracias a un complejo  formado por cinco ribonucleoproteínas (proteínas unidas a pequeñas moléculas de ADN): U1, U2, U4/U6 y U5. Como estas ribonucleoproteínas son pequeñas y están ubicadas en el núcleo se llaman ribonucleoproteínas pequeñas nucleares (snRNPs, por sus siglas en inglés). A todo este complejo que procesa el pre-ARN mensajero se le llama spliceosoma.

¿Como funciona el spliceosoma? De manera sencilla, las snRNPs – específicamente U1 – reconocen sitios específicos al inicio y al final de cada exón, se unen a ellos, doblan el pre-ARN mensajero y mediante unas modificaciones químicas logran sacar los intrones y unir los exones para formar el ARN mensajero maduro. Pero, si una de las snRNPs falla o está mutada, este proceso se ve afectado, el ARN mensajero no madura y se generan muchos problemas funcionales. Por ejemplo, cuando una proteína llamada SMN, que ayuda a que los snRNPs se ensamblen para formar el spliceosoma, es deficiente, el individuo sufre de una enfermedad neurodegenerativa muy común llamada Atrofia Muscular Espinal (AME).

Así que investigadores de la Universidad de Pennsylvania, liderados por el Dr. Gideon Dreyfuss se preguntaron que pasaba si se perdía la función de alguna de las snRNPs. Así que para averiguarlo, inactivaron una por una cada una de las snRNPs, empezando por la U1. Ellos creían que al inactivar las snRNPs, el splicing se vería afectado y habría un aumento sustancial en la cantidad de ARN mensajero sin madurar.

Sin embargo, para su sorpresa, los resultados obtenidos no fueron los esperados. A diferencia de encontrar ARN mensajeros más largos (sin procesar), encontraron ARN mensajeros mucho más pequeños de los normales, truncados a pocos nucleótidos del punto de inicio de la transcripción. Cuando los investigadores secuenciaron estos pequeños fragmentos observaron que todos ellos poseían la cola poly(A), que normalmente debe aparecer al final de la transcripción de un gen.

De estos resultados pudieron sacar una importante conclusión: La carencia de U1 produce un corte y poliadenilación prematura del ARN mensajero. Los genes tienen secuencias específicas que activan la maquinaria de corte y poliadenilación cuando todo el gen ya ha sido transcrito, sin embargo, esta maquinaria puede reconocer otras secuencias en medio de los genes, lo cual, en ausencia de la U1, podría terminar de manera prematura la transcripción del gen.

Y, como todos los genes se transcriben de la misma forma, usando las mismas maquinarias, la carencia de U1 podría afectar la transcripción de todos los genes, así que los ARN mensajeros serían defectuosos y sería imposible hacer un estudio transcriptómico y mucho menos proteómico. Es por esta razón, que la snRNP U1, no sólo cumple una función importante en el procesamiento del pre-ARN mensajero, sino también, en la expresión de todos los genes, protegiendo al ARN que se va transcribiendo, de un corte y poliadenilación prematuro.

Vía Penn Medicine.

Imagen: © The Dreyfuss Laboratory; Penn Medicine

Comentarios

Entradas más populares de este blog

Fusión y fisión de mitocondrias

Se cree que los procariotas aparecieron en el planeta hace unos 3,500 millones de años, mientras que los eucariotas lo hicieron hace unos 2,000 millones de años. Pero, si los procariotas llevan una ventaja de 1,500 millones de años a los eucariotas, ¿por qué ellos no son los organismos más complejos? La respuesta son las mitocondrias [Les recomiendo leer este artículo publicado en el blog]. Todos conocemos a las mitocondrias, si no las recuerdan, aquí se las presento. Tal vez la imagen que tenemos de ellas es que se encuentran diseminadas por toda la célula, aisladas unas de otras o, a lo mucho, reuniéndose en pequeños grupos. Sin embargo, esto no es así. En realidad, las mitocondrias son unos organelos muy dinámicos, que se encuentran fusionándose y dividiéndose constantemente, pero hasta ahora no se sabe a ciencia cierta que rol cumple este proceso. Axel Kowald de la Universidad Humboldt de Berlín y Tom B. L. Kirkwood de la Universidad de Newcastle han desarrollado una teoría

Ozono por el culo

La insuflación rectal de ozono , que en términos coloquiales es ozono por el culo  ( OxC , de forma abreviada), es una forma de ozonoterapia.  Según sus promotores , esta terapia "es muy potente en cuanto a la eliminación de gérmenes intestinales como virus, bacterias, protozoos, hongos, etc ". Incluso pidieron a la Organización Mundial de la Salud que lo usaran para el tratamiento del Ébola.  Según Ozonomédica , la ozonoterapia, en general, "es una eficaz alternativa en el tratamiento y control de muchas patologías y enfermedades crónicas" que incluso "puede retrasar o evitar la aparición de diabetes, cáncer, artritis, artrosis, entre otras". Paciente recibiendo OxC. Fuente: Ozonoterapia . Sin embargo,  de acuerdo con la Administración de Alimentos y Medicamentos de los Estados Unidos ( FDA ), el ozono es un gas tóxico sin alguna aplicación médica conocida . Si bien es cierto, el ozono nos protege de la peligrosa radiación ultravi

Algodón rosa

La mayoría de las personas dan por hecho que el algodón es blanco. Lo vemos así en hisopos, rollos y torundas. Sin embargo, existen de diversos colores, especialmente, en Perú. Marrón, crema, pardo, verde, son algunos de ellos. Como esos algodones no se pueden teñir, la industria textil optó por las variedades de fibra blanca. Muestras de algodón de color. Fuente: Ing. Patricia Ocampo. En la actualidad hay una mayor concienciación por los impactos ambientales que generan los productos que consumimos. La ropa es una de ellas. Los tintes empleados generan contaminación de los cuerpos de agua. En ese contexto, los algodones pigmentados adquieren mayor relevancia, aunque la variedad de colores existentes es muy limitada. La naturaleza tiene infinidad de colores. Un claro ejemplo son las flores: amarillas, azules, rosadas, violetas, rojas y más. Cada pigmento es producido por diversas enzimas que catalizan reacciones químicas para que una molécula se convierta en otra. Por ejemplo, la tiros