Ir al contenido principal

Primer avance del proyecto “1000 genomas”

Casi 10 años después de la presentación del primer borrador del genoma humano, y siete años después de su versión final, aún parece que no ha podido ser aprovechado ni ha podido responder muchas preguntas que se plantearon al momento de elaborar el proyecto: que características nos hacen susceptibles a determinadas enfermedades o de que depende nuestra respuesta a determinadas drogas. Para poder saber esto, se necesita más que conocer el genoma humano, se deben secuenciar muchos más, de individuos con características especiales que nos permitan observar las diferencias entre ellos a nivel genético.

Fue por esta necesidad que nació el proyecto “Estudio de Asociacmiento Genómico Amplio (GWAS: Genomic Wide Association Studies) que busca secuenciar los genomas de miles de personas para identificar las variaciones genéticas y relacionarlos con características específicas. El proyecto “1000 genomes” es parte de GWAS, tiene el objetivo de buscar aquellas variantes genéticas que se presentan al menos en el 1% de los individuos estudiados. En otras palabras, si tenemos 1000 genomas, el proyecto busca las mismas diferencias genéticas que se presentan al menos en 10 individuos diferentes.

Secuenciar un genoma humano aún sigue siendo muy costoso, a pesar que las tecnologías de secuenciamiento han avanzado un montón. Es lógico pensar que cuanto más largo es un genoma mayor es el costo. Como el genoma humano es tan largo, debe ser cortado en pequeños fragmentos y leerlos uno por uno, para luego ensamblarlos usando computadoras. Pero, no basta con secuenciar una vez el genoma ya que pueden haber fragmentos que se pierdan en el proceso, otros que sean mal secuenciados y otros que se secuencien repetidas veces. Estos problemas pueden generar vacíos al momento de ensamblar el genoma. Así que para tener un genoma completo, sin errores y espacios en blanco, la profundidad del secuenciamiento debe ser mayor. Para esto, con los secuenciadores con los que hoy contamos, debemos secuenciar el ADN de una persona unas 28 veces (28X) para obtener un genoma sin espacios vacíos o errores. Además, se debe contar con genomas patrones para poder hacer el ensamblaje de los pequeños fragmentos generados.

1000genomesPara solucionar este problema, 1000 genomes ha desarrollado una novedosa estrategia que permite reducir la profundidad del secuenciamiento a 4X. La idea se basa en caracterizar las variantes más extrañas y las más comunes en los genomas de algunos pocos individuos, y usarlas luego como referencia para llenar los espacios que quedan como consecuencia de la baja cobertura del secuenciamiento (4X). Aunque hay escépticos que critican este método porque es como “inventar” los datos.

Así que el día de ayer se publicó en Nature (el artículo está bajo una licencia de Creative Commons, así que pueden descargarlo libremente) el piloto del proyecto 1000 genomes, el cual analizó todo el genoma de 179 individuos, con una cobertura de 3.6X en promedio, generando un catálogo de más de 8 millones de variantes genéticas de un nucleótido, conocidos como los famosos SNPs. También catalogaron más de 1 millón de variantes estructurales debido a inserciones o deleciones (indels) de secuencias de ADN.

Además, hay que recordar que sólo el 1.5% de todo nuestro genoma es expresado en proteínas, así que los genes estarán dentro de este 1.5%. Los genes dentro del genoma están conformados por exones (regiones que se llegarán a expresar) e intrones (regiones que serán procesadas y removidas del ARN mensajero). Debido a que muchas de las variaciones genéticas se encuentran en los exones y están envueltas directamente con determinadas características de importancia biomédica (resistencia o susceptibilidad a enfermedades, preponderancia a cáncer, diabetes, Alzheimer, etc.), los investigadores secuenciaron, en promedio, 1.4Mb  de exones en 697 individuos, con una cobertura de 56X. Aproximadamente, 1.4Mb de exones corresponde a un poco más de 1000 genes, donde encontraron casi 13000 SNPs y 100 indels.

Secuenciar sólo los exones, es sin dudas, muy efectivo si hablamos de costos, ya que la información que proveen es sumamente importante; pero, tampoco hay que subestimar al ADN no codificante ya que en él se encuentran muchos factores que regulan la expresión de los genes.

Una gran desventaja del secuenciamiento con baja cobertura es que se generan una gran cantidad de errores y espacios vacíos, si bien se ha desarrollado una metodología que permite “llenar” los espacios en blanco. Esta metodología, según los investigadores, permite tener una tasa de error baja, la cual varía entre el 1 y 3%. Aún así, el número de variantes podría estar sobre-estimado, ya que este 1 a 3% de errores podrían ser consideradas como variantes genéticas cuando en realidad no las son.

Además, otra observación importante es que estos datos son tomados en base ha haplotipos, sin embargo, sabemos que nuestro genoma es diploide, así que caracterizar variantes genéticas en sitios heterocigotos es mucho más complicado y la tasa de error aumenta considerablemente de 5 al 30% según el presente estudio. Aún así, la propuesta de combinar un secuenciamiento completo de baja cobertura con un secuenciamiento de exones de alta cobertura, parece ser una muy buena estrategia, mucho mejor que las técnicas tradicionales. Aún falta mejorar su metodología de corrección de errores, pero, este proyecto recién se inicia, así que con el paso del tiempo se irá mejorando y el conocimiento del genoma humano pasará a un nuevo nivel.

Referencias:

ResearchBlogging.orgThe 1000 Genomes Project Consortium (2010). A map of human genome variation from population-scale sequencing Nature, 467 (7319), 1061-1073 DOI: 10.1038/nature09534

Nielsen, R. Genomics: In search of rare human variants. doi: 10.1038/4671050a

Comentarios

Entradas más populares de este blog

Pruebas rápidas y moleculares para COVID-19

Desde que se anunció la adquisición de más de un millón de "pruebas rápidas" para detectar personas con COVID-19, a fines de marzo, estuvieron en el ojo de la tormenta. Diversos científicos se manifestaron a favor o en contra de ellas, tanto en televisión como en redes sociales. El público general también tomó posición, más basada en simpatías políticas que en ciencia. Aquí les hago un resumen para entender de qué va todo esto.
Definamos conceptos "Pruebas moleculares" es un nombre genérico empleado para referirnos a los análisis basados en ácidos nucleicos, que puede ser de ADN o ARN. Por ejemplo, una prueba de paternidad es una prueba molecular. Se analiza el ADN del presunto padre y del hijo(a), para ver si comparten los mismos marcadores genéticos (fragmentos de ADN que son heredados). En el caso del coronavirus (SARS-CoV-2), la prueba molecular detecta marcadores genéticos en su ARN (otra molécula que también puede codificar la información genética).

La prueb…

¿Qué fue del estudio más grande sobre la seguridad de los transgénicos?

La tarde del 11 de noviembre de 2014, en un hotel londinense, se anuncia el lanzamiento de "Factor GMO", el experimento a largo plazo más extenso y detallado jamás realizado sobre un alimento transgénico y su plaguicida asociado.


Con un costo estimado de 25 millones de dólares, el estudio buscaba aportar —con una solidez sin precedentes— valiosa información para permitir a las autoridades reguladoras, los gobiernos y la población general, responder si es seguro el consumo de Organismos Genéticamente Modificados (OGM) o la exposición a su herbicida asociado en condiciones reales.

El experimento —que se llevaría a cabo en un laboratorio secreto en el territorio ruso para evitar cualquier injerencia externa— consistía en someter a 6.000 ratas de laboratorio a diversas dietas basadas en el maíz transgénico NK603 y su herbicida asociado (RoundUp), cuyo principio activo es el glifosato. Es similar al famoso estudio realizado Guilles-Eric Seralini, pero a mayor escala. Solo para re…

Cuando los antioxidantes promueven el cáncer

Hemos comentado muchas veces que las Especies Reactivas del Oxígeno (ROS, por sus siglas en inglés) están involucrados con el envejecimiento y con el desarrollo del cáncer. Esto se debe a que los ROS son altamente reactivos, por lo tanto, son capaces de dañar el ADN generando mutaciones. Por suerte existen los antioxidantes, quienes son los encargados de atrapar los ROS y mantenerlos en niveles que no generen daño alguno. Sin embargo, un grupo internacional de investigadores liderados por la Dra. Gina DeNicola del Instituto de Investigaciones de Cambridge revelaron que el factor de transcripción encargado de activar los genes que nos protegen de los ROS, también puede favorecer el desarrollo de ciertos tumores según un artículo publicado ayer en Nature.Normalmente, cuando las células son sometidas a un estrés fisiológico o sufren de algún tipo de daño genético, se activan una serie de genes y factores de transcripción que, de manera coordinada, regulan el funcionamiento de la célula, …