Ir al contenido principal

¿Cuál es el genoma más grande de todos?

Hace un par de días llegó esta pregunta a mi correo electrónico, pero como no sabía la respuesta me puse a buscar información al respecto.
Para recordar: El tamaño de un genoma se mide en función al número de pares de base que tiene. Como el ADN se presenta en una doble hebra (una complementaria con a otra) el tamaño de un genoma no se mide en número de nucleótidos, como el caso del ARN, si no, en un nucleótido con su base complementaria.
En cuanto al tamaño de los genomas, el humano tiene 3.2 mil millones de pares de base (3.200.000.000 pb) en su versión haploide, mientras que de Carsonella ruddi —una bacteria parásita estricta de algunos insectos— tiene sólo 160.000 pb. Uno podría pensar que cuanto más grande es un genoma más complejo es el organismo, pero esto no es necesariamente así.

En cuanto a los genomas de eucariotas, hasta hace unos años se creía que el genoma más grande era de la ameba Amoeba dubia con unos 670 mil millones de pares de bases (!unas 200 veces más grande que el genoma humano!). El tamaño de este genoma fue reportado por Friz (1978), quien usó métodos bioquímicos para determinar el peso del genoma de esta ameba y, a partir de ahí, calcular su tamaño. 

Sin embargo, este método calculaba el peso del contenido total de ADN, el cual también incluye el ADN mitocondrial, que si bien es pequeño, se encuentra repetido cientos de veces en cada célula dentro de las mitocondrias. Además, este método no permite saber si un genoma es haploide o es poliploides, por lo que no pueden ser usados para compararlos con genomas haploides, que es a partir de donde se saca el tamaño de un genoma. Por ejemplo, el genoma humano es diploide (2n), o sea, el genoma está repetido dos veces, uno por parte de la madre y la otra por parte del padre. Llas papas que comemos normalmente son tetraploides (4n), y los camotes, hexaploides (6n). Así que si extraemos el contenido de ADN total, sus genomas pesarán cuatro o seis veces más de lo que realmente pesan, y lo tanto su tamaño será más grande de lo que realmente es. En el caso de las amebas, sus células pueden ser extremadamente poliploides (40n, 100n, etc.), por eso se creía que sus genomas eran extremadamente grandes.

El mes pasado se reportó en la revista Botanical Journal of the Linnean Society el genoma eucariota más grande de todos, el cual corresponde a una rara planta japonesa, Paris japonica (Melanthiaceae), que tiene nada menos que 149 mil millones de pares de base (unas 50 veces el tamaño del genoma humano). La determinación del tamaño también se hizo en función al peso del ADN, pero, esta vez sólo del ADN nuclear haploide (n), a través de la citometría de flujo. Para ser precisos, el peso del genoma de P. japonica fue de 152,23 picogramos.


Los investigadores creen que al tener un genoma más grande los hace más lábiles, con muchos problemas para soportar la contaminación ambiental y las condiciones climáticas cambiantes. Además, crece más lento que las plantas con menor tamaño de genoma (es lógico, porque a mayor longitud de genoma, más tiempo tomará replicarlo).

Vía | ScienceNow.

Comentarios

  1. Que buena info en tu blog sigue adelante man


    Por fin blog peruano e primer nivel dedicado a ciencias con varios link de interes...felicidades

    ResponderBorrar

Publicar un comentario

Se respetuoso con tus comentarios y críticas. Cualquier comentario ofensivo será eliminado.

Entradas más populares de este blog

Fusión y fisión de mitocondrias

Se cree que los procariotas aparecieron en el planeta hace unos 3,500 millones de años, mientras que los eucariotas lo hicieron hace unos 2,000 millones de años. Pero, si los procariotas llevan una ventaja de 1,500 millones de años a los eucariotas, ¿por qué ellos no son los organismos más complejos? La respuesta son las mitocondrias [Les recomiendo leer este artículo publicado en el blog]. Todos conocemos a las mitocondrias, si no las recuerdan, aquí se las presento. Tal vez la imagen que tenemos de ellas es que se encuentran diseminadas por toda la célula, aisladas unas de otras o, a lo mucho, reuniéndose en pequeños grupos. Sin embargo, esto no es así. En realidad, las mitocondrias son unos organelos muy dinámicos, que se encuentran fusionándose y dividiéndose constantemente, pero hasta ahora no se sabe a ciencia cierta que rol cumple este proceso. Axel Kowald de la Universidad Humboldt de Berlín y Tom B. L. Kirkwood de la Universidad de Newcastle han desarrollado una teoría

Ozono por el culo

La insuflación rectal de ozono , que en términos coloquiales es ozono por el culo  ( OxC , de forma abreviada), es una forma de ozonoterapia.  Según sus promotores , esta terapia "es muy potente en cuanto a la eliminación de gérmenes intestinales como virus, bacterias, protozoos, hongos, etc ". Incluso pidieron a la Organización Mundial de la Salud que lo usaran para el tratamiento del Ébola.  Según Ozonomédica , la ozonoterapia, en general, "es una eficaz alternativa en el tratamiento y control de muchas patologías y enfermedades crónicas" que incluso "puede retrasar o evitar la aparición de diabetes, cáncer, artritis, artrosis, entre otras". Paciente recibiendo OxC. Fuente: Ozonoterapia . Sin embargo,  de acuerdo con la Administración de Alimentos y Medicamentos de los Estados Unidos ( FDA ), el ozono es un gas tóxico sin alguna aplicación médica conocida . Si bien es cierto, el ozono nos protege de la peligrosa radiación ultravi

Algodón rosa

La mayoría de las personas dan por hecho que el algodón es blanco. Lo vemos así en hisopos, rollos y torundas. Sin embargo, existen de diversos colores, especialmente, en Perú. Marrón, crema, pardo, verde, son algunos de ellos. Como esos algodones no se pueden teñir, la industria textil optó por las variedades de fibra blanca. Muestras de algodón de color. Fuente: Ing. Patricia Ocampo. En la actualidad hay una mayor concienciación por los impactos ambientales que generan los productos que consumimos. La ropa es una de ellas. Los tintes empleados generan contaminación de los cuerpos de agua. En ese contexto, los algodones pigmentados adquieren mayor relevancia, aunque la variedad de colores existentes es muy limitada. La naturaleza tiene infinidad de colores. Un claro ejemplo son las flores: amarillas, azules, rosadas, violetas, rojas y más. Cada pigmento es producido por diversas enzimas que catalizan reacciones químicas para que una molécula se convierta en otra. Por ejemplo, la tiros