Ir al contenido principal

Mycoplasma: genoma simple pero estrategia de infección compleja

Micoplasma es el grupo de bacterias con uno de los genomas más pequeño de todos los organismos vivos, el cual llega a medir un poco más de 500 000 pares de base (500Kb) – de E. coli mide ~4800Kb –, por eso son considerados como los organismos vivos más simples con capacidad de auto-replicarse. Fue gracias a esta característica que Craig Venter lo usó para crear su primer organismo vivo controlado por un genoma sintetizado de forma artificial.

Sin embargo, a pesar de su tamaño y simplicidad, es un patógeno importante en mamíferos, plantas y humanos. Debido al pequeño tamaño de su genoma, posee pocos genes que codificarán para pocas proteínas y enzimas, por esta razón, se vale de su célula hospedera para poder vivir, aprovechando de sus nutrientes, aminoácidos y moléculas señalizadoras, convirtiéndose así en un parásito intracelular.

Entonces, ¿como hace un organismo tan simple para ser tan virulento y patogénico? La clave de su éxito es que puede cambiar constantemente la estructura de sus lipoproteínas de la superficie de su membrana celular, la cual esta envuelta directamente en el reconocimiento por parte del sistema inmunológico. Esta misma estrategia es usada por ciertos virus, pero la diferencia radica en que Mycoplasma no hace una mutación propiamente dicha, sino, se vale de una enzima llamada recombinasa, codificada por el gen Xer1, para reordenar la secuencia del gen vpma, el cual codifica para las lipoproteínas de membrana. Los investigadores de la Universidad de Medicina Veterinaria de Viena hicieron este descubrimiento en la especie Mycoplasma agalactiae, un importante patógeno causante de la enfermedad agalaxia, que ataca principalmente a ovejas y cabras.

Demostraron que este gen estaba envuelto en la virulencia de M. agalactiae cuando diseñaron sepas de esta especie carentes del gen de la recombinasa Xer1. Cuando el Mycoplasma no tenía la recombinasa, solo se expresaba un tipo de VPMA (proteína variable de Mycoplasma agalactiae) y el microorganismo se volvía susceptible al ataque por parte del sistema inmunológico del animal.

Esta región vpma se caracteriza por tener varios sitios de reconocimiento para la recombinasa Xer1 conocidos como sitios de recombinación. Los sitios de recombinación (RS) son secuencias de ADN específicas, distanciadas una de otra, donde la enzima corta el ADN y saca esa porción del gen entre las dos RS para introducir otra secuencia en él. A este tipo de recombinación se llama recombinación homóloga y se da principalmente en la Meiosis (el famoso crossing-over). Sin embargo, lo que hace M. agalactiae no es sacar esta región y cambiarla por otra, sino, invertirla.

¿Y donde se encuentran estas regiones RS? Los investigadores encontraron los sitios de recombinación en una región del gen vpma cerca al extremo 5’ que no se llega a ser traducida a proteína (5’UTR). En esta región encontraron una secuencia de 21 nucleótidos altamente conservados en todos los genes vpma, los cuales fueron identificados como los sitios de recombinación. Además, los sitios de recombinación estaban flanqueados por secuencias de nucleótidos que mejoraban la actividad de la recombinasa Xer1 aunque su presencia no era necesaria para que se de la inversión.

Como sugiere este estudio, otras especies de Mycoplasma también pueden tener esta misma estrategia para infectar los tejidos y no ser detectados por el sistema inmunológico del animal. Las especies de Mycoplasma a parte de ser patógenos importantes de muchos animales ganaderos, también son amenazas a la salud de las personas. M. pneumoniae es uno de los principales causantes de las neumonías en personas con el sistema inmunológico comprometido (pacientes de VIH, pacientes de cánceres que están bajo una quimioterapia, pacientes con enfermedades autoinmunes, etc.) y es uno de los patógenos más comunes en las infecciones intrahospitalarias. M. genitalium es uno de los patógenos más comunes en las enfermedades de transmisión sexual, causante de infecciones como la uretritis no gonocócica en el hombre y cervicitis en la mujer.

Como no tiene pared celular no se ve afectada por antibióticos como la penicilina u otros antibióticos beta lactámicos. Además, por ser parásitos intracelulares, son más difíciles de eliminar sin causar daño a la célula hospedera de los tejidos epiteliales. Una buena estrategia sería diseñar fármacos que ataquen o inhiban a la recombinasa Xer1, de esta manera, el sistema inmunológico le podría hacer frente con mayor facilidad.

Referencia:

ResearchBlogging.orgCzurda, S., Jechlinger, W., Rosengarten, R., & Chopra-Dewasthaly, R. (2010). Xer1-Mediated Site-Specific DNA Inversions and Excisions in Mycoplasma agalactiae Journal of Bacteriology, 192 (17), 4462-4473 DOI: 10.1128/JB.01537-09

Imagen: © Vetmeduni Vienna/Stefan Czurda 

Comentarios

Entradas más populares de este blog

Ozono por el culo

La insuflación rectal de ozono , que en términos coloquiales es ozono por el culo  ( OxC , de forma abreviada), es una forma de ozonoterapia.  Según sus promotores , esta terapia "es muy potente en cuanto a la eliminación de gérmenes intestinales como virus, bacterias, protozoos, hongos, etc ". Incluso pidieron a la Organización Mundial de la Salud que lo usaran para el tratamiento del Ébola.  Según Ozonomédica , la ozonoterapia, en general, "es una eficaz alternativa en el tratamiento y control de muchas patologías y enfermedades crónicas" que incluso "puede retrasar o evitar la aparición de diabetes, cáncer, artritis, artrosis, entre otras". Paciente recibiendo OxC. Fuente: Ozonoterapia . Sin embargo,  de acuerdo con la Administración de Alimentos y Medicamentos de los Estados Unidos ( FDA ), el ozono es un gas tóxico sin alguna aplicación médica conocida . Si bien es cierto, el ozono nos protege de la peligrosa radiación ultravi

La citometría de masas, una novedosa técnica para estudiar las células individualmente

Los citómetros de flujo han sido una herramienta fundamental en el descubrimiento y caracterización de los diferentes tipos de células que conforman el sistema inmune. Esta técnica es tan poderosa que permite analizar más 10 parámetros simultáneamente, gracias al uso de anticuerpos marcados con moléculas fluorescentes. Sin embargo, la citometría de flujo parece haber llegado a su límite tecnológico, ya que cuando se pretende analizar más de 10 parámetros a la vez, la superposición de los espectros luminosos dificulta el análisis de los datos. Un grupo de investigadores norteamericanos y canadienses han mejorado la técnica gracias al uso de los principios de la espectrometría de masas según reportaron ayer en Science . De manera sencilla, la citometría de flujo consiste en el paso de una suspensión celular a través de un láser. Para que las células puedan ser detectadas y diferenciadas unas de otras, son marcadas con moléculas fluorescentes que se excitan cuando el rayo láser inci

¿Por qué tanto miedo al bromuro de etidio?

El bromuro de etidio (BrEt) es un agente químico muy usado en técnicas de biología molecular para teñir nuestros geles de agarosa y poder apreciar nuestras bandas de ADN; ya sean de los productos de extracción o de PCR. Existen dos formas de teñir los geles: i) remojando el gel de agarosa por 15 minutos en una bandeja con BrEt (0,5 mg/L) después de haber hecho la electroforesis o ii) añadiendo el BrEt directamente al gel al momento de prepararlo. Con la primera evitamos contaminar nuestra cámara de electroforesis con BrEt y con la segunda evitamos exponernos a salpicaduras y otros accidentes que pueden ocurrir al hacer la tinción en bandeja. Se han dado cuenta que desde que entramos a un laboratorio de biología molecular nos tienen traumados con el BrEt: "¡Cuidado que te salpique!", "¡no lo huelas!", "¡usa tres guantes!", "¡no es por ese lado!", "¡si te cae en la piel te va a dar cáncer y te puedes morir!", entre otras cosas más.