Ir al contenido principal

Esperando el momento oportuno para infectar

Si alguien te pregunta como se da una infección bacteriana seguro dirás… “bueno, el microorganismo patógeno ingresa a nuestro cuerpo, ya sea por una comida en mal estado, por esporas en el aire, por llevarme el dedo a la boca, por comerme una papa rellena de S/. 0.50, etc., y una vez dentro invade nuestras células, apoderándose de ellas.” Si respondiste eso, no estás equivocado. Hasta ahora se pensaba que durante una infección bacteriana, los organismos patógenos invadían nuestras células para llevar una vida “llena de comodidades”; sin embargo, en un reciente artículo publicado por el Dr. Jan Peter Boettcher en la revista PLoS Biology, muestran otro tipo de infección, donde la bacteria patógena, retrasa su ingreso a la célula hospedera  para asegurar su existencia.

Neisseria gonorrhoeae, agente causante de la gonorrea – una enfermedad de transmisión sexual que se caracteriza por inflamación del tracto urogenital, el útero y los ovarios – usa esta estrategia para infectar a sus víctimas. En primer lugar, para poder anclarse a la célula hospedera, N. gonorrhoeae tiene una estructura especializada de superficie llamada pili de tipo IV (Tfp), el cual se caracteriza por anclarse a sustratos sólidos; en este caso, a la célula del tejido infectado; para luego formar microcolonias (placas corticales) en la superficie celular.

Pero no sólo hace eso. Esta interacción del pili con la célula hospedera genera una cascada de reacciones de señalización; una de estas señales cambia la estructura de la superficie celular del hospedero para evitar ser reconocido por el sistema inmunológico. Además, en el punto de contacto entre la célula hospedera y el microorganismo patógeno hay una acumulación de Actina (proteína principal de los microfilamentos que se sitúan en la parte periférica de la célula). Además, otra proteína llamada caveolina-1 impide el ingreso del patógeno a la célula, mediante la fosforilación de sus residuos de tirosina y su interacción con las proteínas Vav2 y la RhoA.

De manera más sencilla, la estrategia de N. gonorrhoeae para mantenerse viva fuera de la célula es mediante una reorganización del citoesqueleto (acumulación de actina) que las protege de las condiciones inhóspitas del medio extracelular; y la fosforilación de la caveolina-1, proteína de membrana que interactúa con Vav2 y RhoA para evitar que la bacteria entre a la célula mediante endocitosis. Estos dos procesos son inducidos por su estructura especializada de superficie llamada pili.

caveolina La caveolina-1 de blanco y los pilis de verde. Se puede ver que los dos se relacionan.

Estos resultados dan una nueva perspectiva sobre los distintos mecanismos que tienen los patógenos para causar infecciones. Por mucho tiempo se creía que los microorganismos patógenos buscaban por todos los medios apoderarse de la célula hospedera; ahora vemos que también tienen estrategias para evitar entrar en ella hasta que las condiciones del medio se las exijan. Este descubrimiento también pudo ser extrapolado a otros patógenos como nuestra querida bacteria intestinal E. coli; y se cree que los agentes infecciosos causantes de la meningitis y la neumonía, también se valen de esta estrategia de infección.

Referencia:

PLoS Biology. DOI: 10.1371/journal.pbio.1000457

Comentarios

Entradas más populares de este blog

Ozono por el culo

La insuflación rectal de ozono , que en términos coloquiales es ozono por el culo  ( OxC , de forma abreviada), es una forma de ozonoterapia.  Según sus promotores , esta terapia "es muy potente en cuanto a la eliminación de gérmenes intestinales como virus, bacterias, protozoos, hongos, etc ". Incluso pidieron a la Organización Mundial de la Salud que lo usaran para el tratamiento del Ébola.  Según Ozonomédica , la ozonoterapia, en general, "es una eficaz alternativa en el tratamiento y control de muchas patologías y enfermedades crónicas" que incluso "puede retrasar o evitar la aparición de diabetes, cáncer, artritis, artrosis, entre otras". Paciente recibiendo OxC. Fuente: Ozonoterapia . Sin embargo,  de acuerdo con la Administración de Alimentos y Medicamentos de los Estados Unidos ( FDA ), el ozono es un gas tóxico sin alguna aplicación médica conocida . Si bien es cierto, el ozono nos protege de la peligrosa radiación ultravi

¿Cuál de los cromosomas X se inactiva en las hembras?

Si preguntamos en la calle ¿cuál es la principal diferencia entre un varón y una mujer?, seguramente las respuestas más frecuentes serán los senos, los órganos reproductores, la barba, la obsesión por los zapatos o por los videojuegos, entre otros.  Pero muy pocos —tal vez algunos biólogos que cayeron en la encuesta— dirán “¡los cromosomas sexuales!”. Y tendrían razón.  La diferencia más sustancial, a partir de la cual se originan todas las demás, son los cromosomas sexuales. En los mamíferos, las hembras tienen dos cromosomas X (XX) y los machos un cromosoma X y un cromosoma Y (XY). A pesar de ser chiquito, el cromosoma Y porta un gen esencial para lograr la diferenciación masculina. De no ser por él, prácticamente todos seríamos hembras, así tuviéramos solo un cromosoma X (X0) como en el Síndrome de Turner . Entonces, serán los machos quienes finalmente determinen el sexo de los hijos porque sus espermatozoides portarán o bien el cromosoma X o bien el cromosoma Y; mient

Conozcan al Pitohui, la ave venenosa

Hasta hoy no sabía que existían aves venenosas, pero ¿como podría ser esto posible?, si en casi todos los grupos de vertebrados hay animales venenosos como ciertas ranas, peces, reptiles, y mamíferos. El pitohui variable ( Pitohui kirhocephalus ) es un ave que habita las selvas de Papúa y Nueva Guinea, pertenece a la familia de las Pachycephalidae , son omnívoras y presentan unas poderosas neurotoxinas alcaloides de la familia de las batraciotoxinas , el mismo veneno que cubre la piel de las ranas venenosas como las del género Phyllobates , que son usadas para envenenar las puntas de los dardos de los cazadores nativos de la selva. Este veneno esta presente en las plumas y la piel del ave y ataca los potenciales eléctricos de los canales de sodio de las neuronas. Esto afecta enormemente al sistema nervioso ya que no puede enviar las señales para el funcionamiento de ciertos órganos como el corazón o los pulmones, conduciendo a una muerte segura. No se sabe exactamente si el pitohui