Ir al contenido principal

Esperando el momento oportuno para infectar

Si alguien te pregunta como se da una infección bacteriana seguro dirás… “bueno, el microorganismo patógeno ingresa a nuestro cuerpo, ya sea por una comida en mal estado, por esporas en el aire, por llevarme el dedo a la boca, por comerme una papa rellena de S/. 0.50, etc., y una vez dentro invade nuestras células, apoderándose de ellas.” Si respondiste eso, no estás equivocado. Hasta ahora se pensaba que durante una infección bacteriana, los organismos patógenos invadían nuestras células para llevar una vida “llena de comodidades”; sin embargo, en un reciente artículo publicado por el Dr. Jan Peter Boettcher en la revista PLoS Biology, muestran otro tipo de infección, donde la bacteria patógena, retrasa su ingreso a la célula hospedera  para asegurar su existencia.

Neisseria gonorrhoeae, agente causante de la gonorrea – una enfermedad de transmisión sexual que se caracteriza por inflamación del tracto urogenital, el útero y los ovarios – usa esta estrategia para infectar a sus víctimas. En primer lugar, para poder anclarse a la célula hospedera, N. gonorrhoeae tiene una estructura especializada de superficie llamada pili de tipo IV (Tfp), el cual se caracteriza por anclarse a sustratos sólidos; en este caso, a la célula del tejido infectado; para luego formar microcolonias (placas corticales) en la superficie celular.

Pero no sólo hace eso. Esta interacción del pili con la célula hospedera genera una cascada de reacciones de señalización; una de estas señales cambia la estructura de la superficie celular del hospedero para evitar ser reconocido por el sistema inmunológico. Además, en el punto de contacto entre la célula hospedera y el microorganismo patógeno hay una acumulación de Actina (proteína principal de los microfilamentos que se sitúan en la parte periférica de la célula). Además, otra proteína llamada caveolina-1 impide el ingreso del patógeno a la célula, mediante la fosforilación de sus residuos de tirosina y su interacción con las proteínas Vav2 y la RhoA.

De manera más sencilla, la estrategia de N. gonorrhoeae para mantenerse viva fuera de la célula es mediante una reorganización del citoesqueleto (acumulación de actina) que las protege de las condiciones inhóspitas del medio extracelular; y la fosforilación de la caveolina-1, proteína de membrana que interactúa con Vav2 y RhoA para evitar que la bacteria entre a la célula mediante endocitosis. Estos dos procesos son inducidos por su estructura especializada de superficie llamada pili.

caveolina La caveolina-1 de blanco y los pilis de verde. Se puede ver que los dos se relacionan.

Estos resultados dan una nueva perspectiva sobre los distintos mecanismos que tienen los patógenos para causar infecciones. Por mucho tiempo se creía que los microorganismos patógenos buscaban por todos los medios apoderarse de la célula hospedera; ahora vemos que también tienen estrategias para evitar entrar en ella hasta que las condiciones del medio se las exijan. Este descubrimiento también pudo ser extrapolado a otros patógenos como nuestra querida bacteria intestinal E. coli; y se cree que los agentes infecciosos causantes de la meningitis y la neumonía, también se valen de esta estrategia de infección.

Referencia:

PLoS Biology. DOI: 10.1371/journal.pbio.1000457

Comentarios

Entradas más populares de este blog

¿Por qué tanto miedo al bromuro de etidio?

El bromuro de etidio (BrEt) es un agente químico muy usado en técnicas de biología molecular para teñir nuestros geles de agarosa y poder apreciar nuestras bandas de ADN; ya sean de los productos de extracción o de PCR. Existen dos formas de teñir los geles: i) remojando el gel de agarosa por 15 minutos en una bandeja con BrEt (0,5 mg/L) después de haber hecho la electroforesis o ii) añadiendo el BrEt directamente al gel al momento de prepararlo. Con la primera evitamos contaminar nuestra cámara de electroforesis con BrEt y con la segunda evitamos exponernos a salpicaduras y otros accidentes que pueden ocurrir al hacer la tinción en bandeja.


Se han dado cuenta que desde que entramos a un laboratorio de biología molecular nos tienen traumados con el BrEt: "¡Cuidado que te salpique!", "¡no lo huelas!", "¡usa tres guantes!", "¡no es por ese lado!", "¡si te cae en la piel te va a dar cáncer y te puedes morir!", entre otras cosas más.

Si b…

TOP 10: Las peores cosas de trabajar en un laboratorio

Encontré este interesante artículo publicado en Science Careers. La verdad es que me ha gustado mucho —me sentí identificado con varios aspectos— tanto que me tomé la libertad de traducirlo y hacerle algunas modificaciones, en base a mi experiencia personal, para ustedes.Tus amigos no-científicos no entienden lo que haces.

Cuando te reúnes con tus amigos del colegio o del barrio y empiezan a hablar acerca de sus trabajos, qué es lo que hacen y cuáles han sido los logros más recientes, ellos fácilmente lo pueden resumir en un “he construido una casa/edificio/puente/carretera”, o “he dejado satisfecho a un cliente” (que feo sonó eso xD), o tu amigo abogado dirá “he sacado de la cárcel a un asaltante confeso y encima he logrado que lo indemnicen”, pero cuando te toca a ti ¿qué dirás? “Bueno he curado… uhm, la verdad no he curado, las ratas viven un poco más pero no las he curado, así que he descubierto… no, esa palabra es muy fuerte. La verdad he probado… este… tampoco, las pruebas están …

¿Qué fue del estudio más grande sobre la seguridad de los transgénicos?

La tarde del 11 de noviembre de 2014, en un hotel londinense, se anuncia el lanzamiento de "Factor GMO", el experimento a largo plazo más extenso y detallado jamás realizado sobre un alimento transgénico y su plaguicida asociado.


Con un costo estimado de 25 millones de dólares, el estudio buscaba aportar —con una solidez sin precedentes— valiosa información para permitir a las autoridades reguladoras, los gobiernos y la población general, responder si es seguro el consumo de Organismos Genéticamente Modificados (OGM) o la exposición a su herbicida asociado en condiciones reales.

El experimento —que se llevaría a cabo en un laboratorio secreto en el territorio ruso para evitar cualquier injerencia externa— consistía en someter a 6.000 ratas de laboratorio a diversas dietas basadas en el maíz transgénico NK603 y su herbicida asociado (RoundUp), cuyo principio activo es el glifosato. Es similar al famoso estudio realizado Guilles-Eric Seralini, pero a mayor escala. Solo para re…