Ir al contenido principal

Viendo las mutaciones en vivo y en directo

Las mutaciones son la principal fuerza evolutiva de los seres vivos, son cambios en la secuencia de un gen a través de inserciones de nuevas secuencias, deleciones de uno o más nucleótidos o cambio de un nucleótido por otro (transiciones o transversiones), que provocan que la proteína codificada por el gen pierda su función, su especificidad o adquiera una nueva característica que le permita tener una ventaja en su supervivencia.

Sin embargo, la única forma de ver las mutaciones es a través de los fenotipos, o sea, la forma final de un determinado organismo. Por ejemplo: una mutación en un gen hace que los ojos de la mosca de la fruta sean blancos en vez de rojo. Los ojos de la mosca los podemos ver, y si son blancos sabemos que es debido a una mutación, pero no podemos ver directamente la mutación (a menos que secuenciemos el gen) y mucho menos el momento preciso en que se da esta mutación. Además, existen muchas mutaciones que no expresan un fenotipo característico. Hay mutaciones que no cambian la función de la proteína porque pueden cambiar un nucleótido por otro pero codificar para el mismo aminoácido o pueden codificar para otro aminoácido con características similares al anterior o aminoácidos que no forman parte del sitio activo de la enzima.

Además, las mutaciones son tan raras – en mamíferos es de 1 en 2.2x109 nucleótidos – que sería imposible ubicarlos en el preciso momento en que están ocurriendo durante la replicación del ADN. Pero, ¿por qué es tan baja la tasa de mutación? Las mutaciones se dan de manera más frecuente de lo que pensamos; pero, la evolución ha permitido el desarrollo una maquinaria de reparación de errores: mismatch repair machinery (MutS, MutL, MutH) y el proofreading de las enzimas polimerasas. Entonces, si queremos ver las mutaciones en vivo y en directo, por qué no marcamos una de las proteínas de estas maquinarias y le hacemos un seguimiento, de seguro que nos llevarán a los puntos donde se están dando las mutaciones!.

Esto fue lo que hizo Marina Elez et al. de la Universidad Paris Descartes y lo publicó el día de ayer en la revista Current Biology. Marina marcó con una molécula fluorescente a un derivado funcional de MutL – proteína clave en la maquinaria de reparación de errores. La proteína MutL se une alrededor de las mutaciones que no pueden ser reparadas formando agregados proteicos (“clusters”). Gracias a que la proteína estaba marcada con una molécula fluorescente, se podía ubicar rápidamente donde estaban las mutaciones, simplemente por el brillo que emitían. De esta manera pudieron ver en vivo y en directo las mutaciones; y además, pudieron cuantificar la cantidad de mutaciones que se daban en el ADN ya que era directamente proporcional a la intensidad de fluorescencia emitida. De esta manera pudieron corroborar la tasa de mutación global de E. coli el cual coincidía con los valores estimados previamente.

Si bien la técnica calcula la tasa de mutación de una célula individual, al repetir en experimento en varias células observaron que las tasas de mutación seguían una distribución de Poisson, lo que sugiere que todas las células en la población tienen casi la misma tasa de mutación. Esta técnica será muy usada para estimar de manera más exacta las tasas de mutaciones, no sólo en otras bacterias, sino también en organismos eucariotas, de manera independiente a su fenotipo. También ayudarán mucho en el diagnóstico temprano de cánceres y desarrollo de tumores, los cuales se caracterizan por una alta tasa de mutación en sus genomas.

Referencia:

Current Biology, DOI: 10.1016/j.cub.2010.06.071

Comentarios

Entradas más populares de este blog

Fusión y fisión de mitocondrias

Se cree que los procariotas aparecieron en el planeta hace unos 3,500 millones de años, mientras que los eucariotas lo hicieron hace unos 2,000 millones de años. Pero, si los procariotas llevan una ventaja de 1,500 millones de años a los eucariotas, ¿por qué ellos no son los organismos más complejos? La respuesta son las mitocondrias [Les recomiendo leer este artículo publicado en el blog]. Todos conocemos a las mitocondrias, si no las recuerdan, aquí se las presento. Tal vez la imagen que tenemos de ellas es que se encuentran diseminadas por toda la célula, aisladas unas de otras o, a lo mucho, reuniéndose en pequeños grupos. Sin embargo, esto no es así. En realidad, las mitocondrias son unos organelos muy dinámicos, que se encuentran fusionándose y dividiéndose constantemente, pero hasta ahora no se sabe a ciencia cierta que rol cumple este proceso. Axel Kowald de la Universidad Humboldt de Berlín y Tom B. L. Kirkwood de la Universidad de Newcastle han desarrollado una teoría

El mapa de las rutas metabólicas… Animado!

¿Qué es una ruta o vía metabólica? De manera sencilla, es el flujo de reacciones que sigue un determinado compuesto al ingresar a la célula, de esta manera, se transforma en una molécula más compleja (biosíntesis o anabolismo) o en una más sencilla (degradación o catabolismo). Por ejemplo: el pan tiene una gran variedad de compuestos químicos, pero el más abundante es el almidón —presente en la harina con el que es elaborado. El almidón es degradado por una serie de reacciones químicas gracias a unas enzimas llamadas amilasas, convirtiéndose en pequeñas unidades de glucosa. La glucosa ingresa a la célula y pasa por una serie de reacciones para llegar a formar dos moléculas de piruvato. Gráficamente lo podemos ver de la siguiente manera: Esta forma de graficarla se ve muy fría y poco llamativa, es más, parece ser muy difícil de aprenderla y no nos dice nada de como es el flujo de las otras moléculas que participan en la reacción, por ejemplo: el ADP y el NADH. Además, ésta sol

¿Por qué tanto miedo al bromuro de etidio?

El bromuro de etidio (BrEt) es un agente químico muy usado en técnicas de biología molecular para teñir nuestros geles de agarosa y poder apreciar nuestras bandas de ADN; ya sean de los productos de extracción o de PCR. Existen dos formas de teñir los geles: i) remojando el gel de agarosa por 15 minutos en una bandeja con BrEt (0,5 mg/L) después de haber hecho la electroforesis o ii) añadiendo el BrEt directamente al gel al momento de prepararlo. Con la primera evitamos contaminar nuestra cámara de electroforesis con BrEt y con la segunda evitamos exponernos a salpicaduras y otros accidentes que pueden ocurrir al hacer la tinción en bandeja. Se han dado cuenta que desde que entramos a un laboratorio de biología molecular nos tienen traumados con el BrEt: "¡Cuidado que te salpique!", "¡no lo huelas!", "¡usa tres guantes!", "¡no es por ese lado!", "¡si te cae en la piel te va a dar cáncer y te puedes morir!", entre otras cosas más.