Ir al contenido principal

Lo que no sabías de las burbujas…

No me refiero a las “burbujitas” de Yola Polastri, ni a los “burbujones”" que andan por las calles… sino de las burbujas hechas, por ejemplo, con jabón o detergente. Todos las hemos visto y seguro de niños nos ha gustado jugar con ellas, pero nunca la hemos visto de una manera tan detallada tal como lo hizo James Bird de la Universidad de Harvard quien, con la ayuda de una cámara de alta velocidad, pudo observar todo lo que ocurre cuando una burbuja estalla.

Tal vez todos hemos visto alguna vez la propaganda del programa de Discovery Channel llamado “En cámara lenta”, donde usando una cámara de alta velocidad graban el preciso momento en que una gota cae en una piscina de agua. Cuando la gota cae se forman unas ondas, y la superficie del agua se tuerce de tal manera que se convierte en algo así como una cama elástica, donde se genera una pequeña gotita que vuelve a saltar para caer y generar otra gotita más pequeña, así hasta desaparecer.

Bonito no?… pero algo que no se había observado hasta ahora era la forma en como una burbuja estalla. Muchos piensan que cuando una burbuja revienta simplemente desaparece… sin embargo, algo inesperado sucede. James Bird — un estudiante recién graduado de Harvard — lo estudio en detalle y su trabajo fue publicado ayer en Nature. En términos simples, cuando una burbuja de jabón explota no desaparece, por una fracción de tiempo sumamente corta (milisegundos) se forma una anillo de pequeñas burbujitas, más chiquitas, en el contorno de la esfera. Pero, eso no es todo… a su vez estas pequeñas burbujitas explotan y generan otro anillo de burbujas mucho más pequeños (Fig.a, b, c y d superior)

Bird y sus colegas hicieron burbujas de glicerol en una solución de agua sobre una lámina de vidrio. Luego filmaron las burbujas desde arriba y los costados a 10000 y 50000 cuadros por segundo — de 300 a 1600 veces más rápido que una cámara común y corriente — y pudieron observar de manera detallada de este fenómeno físico. Debido a que estas cámaras recién están siendo aplicadas en muchas ramas de la ciencia; por ejemplo, para ver como es el mecanismo del movimiento de las alas de los colibrís, de las abejas, de las moscas, la elongación de las lenguas de las ranas y camaleones para casar sus presas, así como para ver los procesos de reacciones químicas violentas como al poner una roca de potasio en agua; es que se ha podido descubrir este fenómeno.

Bird cree que esto se debe a que la presión del aire dentro de las burbujas es mucho mayor a la presión fuera de las burbujas. Cuando se pincha la burbuja las dos presiones tratan de equilibrarse inmediatamente. La rápida pérdida de la presión del aire dentro de la burbuja provoca una efecto de succión sobre las moléculas de glicerol que están a su alrededor, atrapando el aire dentro de si en burbujitas más pequeñas.

Además, observaron que cuando revienta una burbuja en una superficie de agua, la presión de aire contenida en la burbuja forman una depresión, que debido a la tensión superficial del agua genera una fuerza elástica que expulsa pequeñas gotitas al aire a velocidades de 18Km/h. Esto explicaría por qué las brisas marinas tienen pequeñas partículas de agua. Las burbujas que se forman  en el mar estallan e impulsan como cuetes pequeñas gotitas de agua, las cuales son arrastradas por el viento hacia las costas. Este mismo efecto explicaría porque cuando acercamos nuestra cara a un vaso de gaseosa sentimos esas pequeñas gotitas de líquido chocar en nuestro rostro, o cuando estamos con indigestión, sentir como pequeñas gotitas nos golpean la cara al tomar la Sal de Andrews.

Sin embargo, estas gotitas saltarinas necesitan de un determinado grosor de agua. Cuando la capa de agua es fina no se genera la torsión necesaria como para propulsar las pequeñas gotitas a la atmósfera. Esto podría ser aplicado a la industria de los vidrios y cristales donde la formación de burbujas son un grave problema que muchas veces es difícil de controlar.

Referencias:

Bird, J., de Ruiter, R., Courbin, L., & Stone, H. (2010). Daughter bubble cascades produced by folding of ruptured thin films Nature, 465 (7299), 759-762 DOI: 10.1038/nature09069

Videos: Wired Science.

Comentarios

Publicar un comentario

Se respetuoso con tus comentarios y críticas. Cualquier comentario ofensivo será eliminado.

Entradas más populares de este blog

Pruebas rápidas y moleculares para COVID-19

Desde que se anunció la adquisición de más de un millón de "pruebas rápidas" para detectar personas con COVID-19, a fines de marzo, estuvieron en el ojo de la tormenta. Diversos científicos se manifestaron a favor o en contra de ellas, tanto en televisión como en redes sociales. El público general también tomó posición, más basada en simpatías políticas que en ciencia. Aquí les hago un resumen para entender de qué va todo esto.
Definamos conceptos "Pruebas moleculares" es un nombre genérico empleado para referirnos a los análisis basados en ácidos nucleicos, que puede ser de ADN o ARN. Por ejemplo, una prueba de paternidad es una prueba molecular. Se analiza el ADN del presunto padre y del hijo(a), para ver si comparten los mismos marcadores genéticos (fragmentos de ADN que son heredados). En el caso del coronavirus (SARS-CoV-2), la prueba molecular detecta marcadores genéticos en su ARN (otra molécula que también puede codificar la información genética).

La prueb…

¿Qué fue del estudio más grande sobre la seguridad de los transgénicos?

La tarde del 11 de noviembre de 2014, en un hotel londinense, se anuncia el lanzamiento de "Factor GMO", el experimento a largo plazo más extenso y detallado jamás realizado sobre un alimento transgénico y su plaguicida asociado.


Con un costo estimado de 25 millones de dólares, el estudio buscaba aportar —con una solidez sin precedentes— valiosa información para permitir a las autoridades reguladoras, los gobiernos y la población general, responder si es seguro el consumo de Organismos Genéticamente Modificados (OGM) o la exposición a su herbicida asociado en condiciones reales.

El experimento —que se llevaría a cabo en un laboratorio secreto en el territorio ruso para evitar cualquier injerencia externa— consistía en someter a 6.000 ratas de laboratorio a diversas dietas basadas en el maíz transgénico NK603 y su herbicida asociado (RoundUp), cuyo principio activo es el glifosato. Es similar al famoso estudio realizado Guilles-Eric Seralini, pero a mayor escala. Solo para re…

Cuando los antioxidantes promueven el cáncer

Hemos comentado muchas veces que las Especies Reactivas del Oxígeno (ROS, por sus siglas en inglés) están involucrados con el envejecimiento y con el desarrollo del cáncer. Esto se debe a que los ROS son altamente reactivos, por lo tanto, son capaces de dañar el ADN generando mutaciones. Por suerte existen los antioxidantes, quienes son los encargados de atrapar los ROS y mantenerlos en niveles que no generen daño alguno. Sin embargo, un grupo internacional de investigadores liderados por la Dra. Gina DeNicola del Instituto de Investigaciones de Cambridge revelaron que el factor de transcripción encargado de activar los genes que nos protegen de los ROS, también puede favorecer el desarrollo de ciertos tumores según un artículo publicado ayer en Nature.Normalmente, cuando las células son sometidas a un estrés fisiológico o sufren de algún tipo de daño genético, se activan una serie de genes y factores de transcripción que, de manera coordinada, regulan el funcionamiento de la célula, …