Ir al contenido principal

S. aureus vs S. epidermidis

Día a día luchamos contra pequeños organismos capaces de causarnos serias enfermedades e infecciones, pero también vivimos en armonía con millones de bacterias que en vez de hacernos daño nos favorecen, tal como las bacterias que viven en nuestro sistema digestivo. Sin embargo, también tenemos bacterias que habitan normalmente nuestra piel, sin causarnos daño alguno, pero que si llegan a entrar a nuestro organismo pueden causarnos terribles males como la neumonía, meningitis, endocarditis y septicemia. Estamos hablando del Staphylococus aureus.

El S. aureus es un habitante común de las fosas nasales, más de la tercera parte del mundo la tiene colonizando sus narices, pero hay una con la que debemos tener cierto cuidado, la S. aureus resistente a la meticilina (SARM). Sin embargo, la mayoría de las personas podemos combatir a esta bacteria, pero puede llegar a ser mortal si infecta a pacientes con el sistema inmunológico comprometido como son los infectados con el VIH o los que están recibiendo tratamiento para alguna enfermedad autoinmune. Los esfuerzos por diseñar nuevos compuestos capaces de inhibir el crecimiento de SARM son grandes, pero hasta ahora no se han obtenido buenos resultados.

Por suerte, S. aureus no es el único comensal que vive en nuestras narices, también lo hace su primo hermano, el S. epidermidis, que es más común que el S. aureus y es el principal contaminante de todos nuestros equipos de laboratorio. Al igual que su primo hermano, S. epidermidis es inofensivo menos en las personas con el sistema inmune comprometido. Pero lo que Iwase et al. encontraron fue muy interesante… S. epidermidis inhibía el desarrollo de S. aureus.

Iwase y sus colaboradores revisaron las narices de 88 voluntarios. Virtualmente, todo ellos estaban colonizados por S. epidermidis, pero S. aureus pudieron “establecer sus carpas” en la tercera parte de los voluntarios. Normalmente, S. aureus y S. epidermidis son capaces de coexistir en armonía, pero los investigadores encontraron algunas cepas de S. epidermidis eran los némesis de S. aureus.

Las colonias de S. aureus forman estructuras morfológicas con características funcionales complejas llamadas biopelículas (biofilms), las cuales son una extensión de la matriz extracelular de las bacterias rica en polisacáridos, que les da protección haciéndolas difícil de matar. Muchas de las bacterias patógenas que hoy conocemos forman biopelículas, convirtiéndolas en un importante reto para la salud pública. S. epidermidis no solo previene la formación de biopelículas por parte de S. aureus, también puede destruir las existentes. Las personas que tienen S. epidermidis en sus narices, tienen un 70% menos de probabilidad de ser colonizados por S. aureus.

Iwase aisló estas cepas de S. epidermidis y las cultivó junto a S. aureus para extraer y purificar el compuesto que le daba esta propiedad asesina. Las secreciones eran ricas en una proteína a la cual llamaron Esp (serina proteasa de S. epidermidis). Como era de esperarse, esta proteína estaba ausente en aquellas cepas que no inhibían el crecimiento de S. aureus y si se removía el gen que la codificaba, la S. epidermidis perdía su capacidad inhibidora.

imageBarras Negra: efecto de S. epidermidis competente. Barras blancas: efecto de S. epidermidis no-inhibitoria

Pero la Esp no actúa por sí sola, lo hace en conjunto con una proteína defensiva humada llamada hBD2 (β-defensina Humana 2) que es secretada por nuestras células de la piel. De por sí sola, la hBD2 puede matar al S. aureus, pero no lo suficiente como para evitar que formen las biopelículas. Sin embargo, Esp no tenía la capacidad de hacerlo por sí misma. Pero una vez juntas, su efecto era sumamente efectivo, aún así S. aureus ya esté protegida por sus biopelículas. No se sabe si estas dos proteínas coevolucionaron quedando la puerta abierta para futuras investigaciones.

image

Como experimento final, insertaron S. epidermidis competentes en pacientes con las fosas nasales colonizadas por el S. aureus y observaron que la bacteria trasplantada eliminó a todos sus primos hermanos. También se introdujo una pequeña dosis de la proteína Esp purificada y se obtuvieron los mismos resultados. Este descubrimiento da el primer paso al desarrollo de compuestos capaces de combatir a la temible SARM que permitirían mejorar la calidad de vida de los pacientes que sufren de VIH o de enfermedades autoinmunes. Otra pregunta queda abierta… ¿Por qué S. aureus no ha desarrollado algún tipo de resistencia a la Esp?

Referencia:

ResearchBlogging.orgIwase, T., Uehara, Y., Shinji, H., Tajima, A., Seo, H., Takada, K., Agata, T., & Mizunoe, Y. (2010). Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization Nature, 465 (7296), 346-349 DOI: 10.1038/nature09074

Comentarios

  1. Hola ami me detectaron esa bacteria y me dieron medicamento,pero otro doctor me dijo que esa bacteria la tenemos todos que el medicanto no le iba a hacer nada quisiera saber si es verdad?

    ResponderBorrar

Publicar un comentario

Se respetuoso con tus comentarios y críticas. Cualquier comentario ofensivo será eliminado.

Entradas más populares de este blog

Fusión y fisión de mitocondrias

Se cree que los procariotas aparecieron en el planeta hace unos 3,500 millones de años, mientras que los eucariotas lo hicieron hace unos 2,000 millones de años. Pero, si los procariotas llevan una ventaja de 1,500 millones de años a los eucariotas, ¿por qué ellos no son los organismos más complejos? La respuesta son las mitocondrias [Les recomiendo leer este artículo publicado en el blog]. Todos conocemos a las mitocondrias, si no las recuerdan, aquí se las presento. Tal vez la imagen que tenemos de ellas es que se encuentran diseminadas por toda la célula, aisladas unas de otras o, a lo mucho, reuniéndose en pequeños grupos. Sin embargo, esto no es así. En realidad, las mitocondrias son unos organelos muy dinámicos, que se encuentran fusionándose y dividiéndose constantemente, pero hasta ahora no se sabe a ciencia cierta que rol cumple este proceso. Axel Kowald de la Universidad Humboldt de Berlín y Tom B. L. Kirkwood de la Universidad de Newcastle han desarrollado una teoría

El mapa de las rutas metabólicas… Animado!

¿Qué es una ruta o vía metabólica? De manera sencilla, es el flujo de reacciones que sigue un determinado compuesto al ingresar a la célula, de esta manera, se transforma en una molécula más compleja (biosíntesis o anabolismo) o en una más sencilla (degradación o catabolismo). Por ejemplo: el pan tiene una gran variedad de compuestos químicos, pero el más abundante es el almidón —presente en la harina con el que es elaborado. El almidón es degradado por una serie de reacciones químicas gracias a unas enzimas llamadas amilasas, convirtiéndose en pequeñas unidades de glucosa. La glucosa ingresa a la célula y pasa por una serie de reacciones para llegar a formar dos moléculas de piruvato. Gráficamente lo podemos ver de la siguiente manera: Esta forma de graficarla se ve muy fría y poco llamativa, es más, parece ser muy difícil de aprenderla y no nos dice nada de como es el flujo de las otras moléculas que participan en la reacción, por ejemplo: el ADP y el NADH. Además, ésta sol

Crea tus propias rutas metabólicas con PathVisio

Alguna vez se han preguntado como hacen los científicos para hacer las rutas metabólicas que vemos en los libros o en los artículos científicos? Usan programas especializados en este tipo de diseños, es algo así como un AutoCad para biólogos. Aunque también lo puedes hacer en Power Point o en Corel Draw, pero estos programas no entenderían el contexto biológico de la ruta metabólica, las conexiones entre genes y proteínas. PathVisio es una herramienta que te permite crear rutas metabólicas con significado biológico para tus presentaciones o para publicarlos en un artículo o una monografía. Y si ya eres un investigador que usa técnicas de biología molecular avanzadas como el secuenciamiento genético y los microarreglos, puedes diseñar nuevas vías metabólicas, a partir de tus resultados y exportarlos a WikiPathways . También te permite descargar rutas metabólicas y base de datos de genes de organismos modelos muy usados en biología como son de Drosophila melanogaster , Saccharomy