Ir al contenido principal

Haciendo lluvias con láser

Las sequías son uno de los principales problemas que afectan a la agricultura, costando millones de dólares en pérdidas y no podemos evitarla. El fenómeno del Niño causa sequías en zonas donde siempre fueron húmedas, mientras que causa lluvias e inundaciones en zonas desérticas, algo así como una inversión climática. Pero, no sería fantástico poder controlar las lluvias, hacer que llueva cuando realmente lo necesitáramos. Esto ya está cerca de ser posible.

Los científicos han intentado generar lluvias artificiales desde la década de los 40’s. Uno de los métodos más populares era “sembrar” pequeñas partículas de ioduro de plata en las nubes. ¿Pero que tienen que ver estás partículas con las lluvias? Todos nosotros sabemos que las nubes son grandes masas de vapor de agua que se juntan y se mueven debido a los vientos. Sin embargo, alguna vez se han puesto a pensar por qué el vapor de agua no se condensa —o en el mejor de los casos, se congela— si las temperaturas a esas alturas son muy bajas, a veces por debajo del punto de fusión del agua (0°C)?. La respuesta es que el vapor de agua puede estar a muy bajas temperaturas y aún así mantenerse en estado gaseoso, esto porque requieren de una superficie para iniciar el proceso de condensación; sin un soporte, el agua no puede condensarse. Una forma más fácil de entenderlo es cuando nos tomamos una ducha con agua caliente en invierno, nuestro baño se inunda de vapor pero sólo se condensa en las paredes, cortinas, ventanas y espejos, nunca cae como lluvia, esto mismo ocurre en las nubes. Así que, al bombardear las nubes con partículas, en este caso de ioduro de plata, lo que estamos haciendo es dar un soporte para que el agua se condense y caiga como lluvia.

En 1911, un físico llamado Charles Wilson, hacía mediciones de los rayos cósmicos —partículas subatómicas altamente energéticas— usando un aparato llenado con vapor de agua (detector). Wilson observó que cuando los rayos cósmicos atravesaban el detector dejaban una estela visible de gotitas de agua tras su trayectoria… había una condensación! Esto ocurría porque el rayo cósmico chocaba con las moléculas de agua y le quitaba un electrón (las ionizaba), y cuando la molécula de agua tiene carga actúa como si fuera una partícula de polvo y las demás moléculas de agua empiezan a condensarse a su alrededor. La molécula de agua ionizada actúa como si fuera una superficie.

Este mecanismo fue aprovechado por Rohwetter et al. quienes pensaron que si se daba la condensación del agua con los rayos cósmicos o fotones de alta energía, también podrían darse con rayos láser de gran potencia. Así que, primero diseñaron un experimento de laboratorio bombardeando con un láser infrarrojo —a una longitud de onda de 800nm y a 3.5 TW (3.5 trillones de wats) de potencia— una nube artificial dentro de una cámara cerrada. Observaron que inmediatamente después del bombardearla con el láser (Fig. a y b), la niebla empezaba a formar pequeñas gotitas de agua condensada de unos 50 micrómetros (um) de diámetro y que crecían a 80um en los siguientes tres segundos. Hasta aquí el experimento se veía bastante prometedor.

imagea. Antes de bombardearlo con el laser. b. Después.

Así que intentaron reproducir este experimento “in vivo”, o sea, bombardeando con el láser una nube de verdad. Así que durante varias noches del tercer trimestre del 2008 apuntaron con un láser de gran potencia (“Teramobile”) hacia el cielo. Debido a la distancia de las nubes no pudieron apreciar si había o no condensación del agua. Usaron un segundo láser para confirmar la formación de las gotitas de agua.

image

Si bien encontraron que había un cierto grado de condensación del agua, no era capaz de generar una lluvia artificial. Sin embargo ha sido un gran avance hacia el control de las lluvias la cual tendrá grandes implicancias en la agricultura y otros sectores económicos. El estudio en laboratorio también demostró que se podría condensar el agua en la atmósfera así aún no esté saturada de agua. Pero, si se sigue desarrollando esta tecnología, en pocos años podremos generar nubes y lluvias en cualquier parte del mundo.

Referencia:

ResearchBlogging.orgRohwetter, P., Kasparian, J., Stelmaszczyk, K., Hao, Z., Henin, S., Lascoux, N., Nakaema, W., Petit, Y., Queißer, M., Salamé, R., Salmon, E., Wöste, L., & Wolf, J. (2010). Laser-induced water condensation in air Nature Photonics DOI: 10.1038/nphoton.2010.115

Comentarios

  1. Great blog and there are useful information for each researcher Thank you

    ResponderBorrar

Publicar un comentario

Se respetuoso con tus comentarios y críticas. Cualquier comentario ofensivo será eliminado.

Entradas más populares de este blog

Fusión y fisión de mitocondrias

Se cree que los procariotas aparecieron en el planeta hace unos 3,500 millones de años, mientras que los eucariotas lo hicieron hace unos 2,000 millones de años. Pero, si los procariotas llevan una ventaja de 1,500 millones de años a los eucariotas, ¿por qué ellos no son los organismos más complejos? La respuesta son las mitocondrias [Les recomiendo leer este artículo publicado en el blog]. Todos conocemos a las mitocondrias, si no las recuerdan, aquí se las presento. Tal vez la imagen que tenemos de ellas es que se encuentran diseminadas por toda la célula, aisladas unas de otras o, a lo mucho, reuniéndose en pequeños grupos. Sin embargo, esto no es así. En realidad, las mitocondrias son unos organelos muy dinámicos, que se encuentran fusionándose y dividiéndose constantemente, pero hasta ahora no se sabe a ciencia cierta que rol cumple este proceso. Axel Kowald de la Universidad Humboldt de Berlín y Tom B. L. Kirkwood de la Universidad de Newcastle han desarrollado una teoría

El mapa de las rutas metabólicas… Animado!

¿Qué es una ruta o vía metabólica? De manera sencilla, es el flujo de reacciones que sigue un determinado compuesto al ingresar a la célula, de esta manera, se transforma en una molécula más compleja (biosíntesis o anabolismo) o en una más sencilla (degradación o catabolismo). Por ejemplo: el pan tiene una gran variedad de compuestos químicos, pero el más abundante es el almidón —presente en la harina con el que es elaborado. El almidón es degradado por una serie de reacciones químicas gracias a unas enzimas llamadas amilasas, convirtiéndose en pequeñas unidades de glucosa. La glucosa ingresa a la célula y pasa por una serie de reacciones para llegar a formar dos moléculas de piruvato. Gráficamente lo podemos ver de la siguiente manera: Esta forma de graficarla se ve muy fría y poco llamativa, es más, parece ser muy difícil de aprenderla y no nos dice nada de como es el flujo de las otras moléculas que participan en la reacción, por ejemplo: el ADP y el NADH. Además, ésta sol

Crea tus propias rutas metabólicas con PathVisio

Alguna vez se han preguntado como hacen los científicos para hacer las rutas metabólicas que vemos en los libros o en los artículos científicos? Usan programas especializados en este tipo de diseños, es algo así como un AutoCad para biólogos. Aunque también lo puedes hacer en Power Point o en Corel Draw, pero estos programas no entenderían el contexto biológico de la ruta metabólica, las conexiones entre genes y proteínas. PathVisio es una herramienta que te permite crear rutas metabólicas con significado biológico para tus presentaciones o para publicarlos en un artículo o una monografía. Y si ya eres un investigador que usa técnicas de biología molecular avanzadas como el secuenciamiento genético y los microarreglos, puedes diseñar nuevas vías metabólicas, a partir de tus resultados y exportarlos a WikiPathways . También te permite descargar rutas metabólicas y base de datos de genes de organismos modelos muy usados en biología como son de Drosophila melanogaster , Saccharomy