Ir al contenido principal

Una RNasa que puede cortar el ADN

Las RNasas (Ribonucleasas) son enzimas que cortan las secuencias de ARN para su posterior degradación. Son importantes, por ejemplo, cuando hacemos extracción de ADN, evitando la presencia de ARN en nuestras muestras. Las enzimas son bastante específicas a sus sustratos, o sea, solo degradan las moléculas para han sido programadas. Si la enzima se vuelve inespecífica puede acarrear muchos problemas fisiológicos y causar ciertas enfermedades. Sin embargo, algunas enzimas pueden tener más de un sustrato mientras que un sustrato también puede ser degradado por diferentes enzimas.

Nakagawa et al. estudiaba los mecanismos de la apoptosis, un proceso normal de las células para autoeliminarse cuando están viejas o funcionan mal debido a ciertas mutaciones. Este mecanismo, en mamíferos, se caracteriza por la activación de iniciadores de DNasas (como las RNasas pero estas sí degradan el ADN) que digieren el ADN antes de que la célula se desensamble. Nakagawa quería saber como se daba este proceso en C. elegans, un nematodo muy usado en estudios biológicos y se dio con la sorpresa que una RNasa tipo III estaba envuelta en la degradación de ADN.

Dicer es esta RNasa III, la cual tiene un rol importante en el procesamiento de los ARN de interferencia, los cuales son responsable de regular la expresión de ciertos genes a través del silenciamiento de genes. Dicer, también es responsable del procesamiento de los microARN, otro tipo de ARN de cadena muy corta (~20nt) que también regulan la expresión de los genes. En condiciones normales, Dicer se una a ARN de doble cadena y con ayuda de otra proteína (RBP: RNA Binding Protein) la cortan para formar el ARN de interferencia (Figura).

image

En C. elegans, Dicer tiene la capacidad de cortar el ADN y pasar de una función de RNasa a una función de DNasa. Nakagawa postuló que Dicer-1 (codificado por el gen dcr-1) se una a una proteína llamada caspasa CED-3 (codificada por el gen ced-3) en el dominio RNasa IIIa, formándose un Dicer truncado. Dicer requiere de los dos dominios RNasa (IIIa y IIIb) para procesar (cortar) el ARN de doble cadena. Al estar truncado, muestra una actividad de DNasa, uniéndose al ADN y cortándolo. También descubrieron que lo hace con el mismo sitio activo, ya que al mutar y modificar los aminoácidos del residuo catalítico (cambiar la configuración del sitio activo), pierde sus dos funciones (RNasay DNasa).

image

De esta manera demostraron que por medio de la caspasa CED-3, Dicer puede pasar de ser una RNasa a una DNasa. En condiciones normales Dicer se encuentra completo, pero cuando la célula se prepara para la apoptosis, los niveles de CED-3 aumentan y provocan el cambio de función de Dicer. Así que Dicer tiene una función importante en la muerte celular programada.

Referencia:

ResearchBlogging.orgNakagawa, A., Shi, Y., Kage-Nakadai, E., Mitani, S., & Xue, D. (2010). Caspase-Dependent Conversion of Dicer Ribonuclease into a Death-Promoting Deoxyribonuclease Science, 328 (5976), 327-334 DOI: 10.1126/science.1182374

Comentarios

  1. Gracias por la información (Y) Me fue muy util!!

    ResponderBorrar

Publicar un comentario

Se respetuoso con tus comentarios y críticas. Cualquier comentario ofensivo será eliminado.

Entradas más populares de este blog

Fusión y fisión de mitocondrias

Se cree que los procariotas aparecieron en el planeta hace unos 3,500 millones de años, mientras que los eucariotas lo hicieron hace unos 2,000 millones de años. Pero, si los procariotas llevan una ventaja de 1,500 millones de años a los eucariotas, ¿por qué ellos no son los organismos más complejos? La respuesta son las mitocondrias [Les recomiendo leer este artículo publicado en el blog]. Todos conocemos a las mitocondrias, si no las recuerdan, aquí se las presento. Tal vez la imagen que tenemos de ellas es que se encuentran diseminadas por toda la célula, aisladas unas de otras o, a lo mucho, reuniéndose en pequeños grupos. Sin embargo, esto no es así. En realidad, las mitocondrias son unos organelos muy dinámicos, que se encuentran fusionándose y dividiéndose constantemente, pero hasta ahora no se sabe a ciencia cierta que rol cumple este proceso. Axel Kowald de la Universidad Humboldt de Berlín y Tom B. L. Kirkwood de la Universidad de Newcastle han desarrollado una teoría

El mapa de las rutas metabólicas… Animado!

¿Qué es una ruta o vía metabólica? De manera sencilla, es el flujo de reacciones que sigue un determinado compuesto al ingresar a la célula, de esta manera, se transforma en una molécula más compleja (biosíntesis o anabolismo) o en una más sencilla (degradación o catabolismo). Por ejemplo: el pan tiene una gran variedad de compuestos químicos, pero el más abundante es el almidón —presente en la harina con el que es elaborado. El almidón es degradado por una serie de reacciones químicas gracias a unas enzimas llamadas amilasas, convirtiéndose en pequeñas unidades de glucosa. La glucosa ingresa a la célula y pasa por una serie de reacciones para llegar a formar dos moléculas de piruvato. Gráficamente lo podemos ver de la siguiente manera: Esta forma de graficarla se ve muy fría y poco llamativa, es más, parece ser muy difícil de aprenderla y no nos dice nada de como es el flujo de las otras moléculas que participan en la reacción, por ejemplo: el ADP y el NADH. Además, ésta sol

Crea tus propias rutas metabólicas con PathVisio

Alguna vez se han preguntado como hacen los científicos para hacer las rutas metabólicas que vemos en los libros o en los artículos científicos? Usan programas especializados en este tipo de diseños, es algo así como un AutoCad para biólogos. Aunque también lo puedes hacer en Power Point o en Corel Draw, pero estos programas no entenderían el contexto biológico de la ruta metabólica, las conexiones entre genes y proteínas. PathVisio es una herramienta que te permite crear rutas metabólicas con significado biológico para tus presentaciones o para publicarlos en un artículo o una monografía. Y si ya eres un investigador que usa técnicas de biología molecular avanzadas como el secuenciamiento genético y los microarreglos, puedes diseñar nuevas vías metabólicas, a partir de tus resultados y exportarlos a WikiPathways . También te permite descargar rutas metabólicas y base de datos de genes de organismos modelos muy usados en biología como son de Drosophila melanogaster , Saccharomy