Ir al contenido principal

Podrían los microbios de la Tierra contaminar Marte?

Imagínense esta situación…

Dentro de unos 135 años, la primera colonia humana se instala en el “planeta rojo”, ya en los últimos años llegaron sondas espaciales cargando los primeros componentes de la estación de investigación marciana. Son cinco los astronautas que llegan para formar esta primera colonia humana permanente, se quedarán ahí por un año investigando las posibles formas de vida que pudieron haber existido en Marte, hasta que sean relevados por un segundo grupo de astronautas. A los pocos días uno de ellos se pone muy grave y sin un hospital y sólo con algunos medicamentos para los posibles enfermedades que podrían contraer como algunas infecciones estomacales —porque se supone que es un planeta estéril, sin agentes infecciosos más los que llevan en el cuerpo cada uno— el primer astronauta muere, y a los pocos días los demás se ponen igual de graves y todos mueren. El segundo grupo de astronautas que llegan investigan las causas de la muerte y se dan con la sorpresa de que es la enterobacteria Serratia la causante del daño. Pero al salir de la Tierra, no mostraban signos de infección con Serratia y sus muestras de heces mostraban una baja concentración de este enteropatógeno, ¿como se infectaron? Salen a investigar y se dan con la sorpresa que el suelo marciano esta infestado con pequeñas colonias de Serratia y E. coli. ¡Hay vida en Marte!, pero es nuestra… ¿Que pasó?… Las sondas espaciales que llegaron a Marte desde el siglo XX no estaban bien esterilizadas y contaminaron en “planeta rojo”.

Un artículo publicado en la revista Applied and Environmental Microbiology demuestra que las bacterias comúnmente asociadas a las naves y sondas espaciales —Escherichia coli y Serratia liquefaciens— son capaces de sobrevivir al ambiente extremo de Marte, lo suficiente como para contaminarlo con vida terrestre. Ya se conocía que estas bacterias pueden crecer a bajas presiones atmosféricas (~2.5kPa). Sin embargo, el suelo marciano además se caracteriza por su alta salinidad y bajas temperaturas. Así que los investigadores de la Universidad Central de Florida diseñaron medios de cultivos y ambientes combinando estas características. Evaluaron la supervivencia y replicación de estas dos especies de bacterias a diferentes temperaturas (5, 10, 20 y 30°C) con concentraciones de 0, 5, 10 y 20% de tres diferentes sales (MgCl2, MgSO4 y NaCl).

Como era de esperarse, se obtuvo altas tasas de crecimiento a temperaturas de 20 y 30°C y concentraciones de sal de 0 y 5%. En las otras condiciones —temperaturas más bajas y altas concentraciones de sal— no hubo un incremento en la densidad celular de las dos especies, con excepción de 10% de MgSO4 a 20 y 30°C. Hasta ahora no tiene mucho de extraño estos resultados ya que son casi las condiciones en las que pueden vivir estos microorganismos en nuestro planeta, en la superficie de Marte las condiciones son más duras; sin embargo, todas tuvieron una tasa de crecimiento significativa a presiones muy bajas (2.5 y 10kPa), aunque aún esta por debajo de la encontrada en Marte.

Pero, lo interesante de este estudio fue que, una vez se obtenían células vegetativas de estas dos especies y se ponían en medios de cultivo y condiciones análogas al encontrado en Marte (temperaturas de 20°C de día y -50°C de noche, radiación UV de 200 a 280nm a 3.6 W m–2 por 8 horas, presiones de 0.71kPa y una proporción de gas similar a la composición de su atmósfera) pudieron sobrevivir aunque nunca pudieron incrementar su densidad celular.

Así que hay que tener más cuidado para futuras investigaciones, y no emocionarnos mucho si encontramos pequeños microbios en Marte porque podría ser nuestras propias formas de vida que se mantendrán en un estado de latencia hasta que las condiciones marcianas mejoren.

Referencia:

ResearchBlogging.orgBerry, B., Jenkins, D., & Schuerger, A. (2010). Effects of Simulated Mars Conditions on the Survival and Growth of Escherichia coli and Serratia liquefaciens Applied and Environmental Microbiology, 76 (8), 2377-2386 DOI: 10.1128/AEM.02147-09

Comentarios

Entradas más populares de este blog

Fusión y fisión de mitocondrias

Se cree que los procariotas aparecieron en el planeta hace unos 3,500 millones de años, mientras que los eucariotas lo hicieron hace unos 2,000 millones de años. Pero, si los procariotas llevan una ventaja de 1,500 millones de años a los eucariotas, ¿por qué ellos no son los organismos más complejos? La respuesta son las mitocondrias [Les recomiendo leer este artículo publicado en el blog]. Todos conocemos a las mitocondrias, si no las recuerdan, aquí se las presento. Tal vez la imagen que tenemos de ellas es que se encuentran diseminadas por toda la célula, aisladas unas de otras o, a lo mucho, reuniéndose en pequeños grupos. Sin embargo, esto no es así. En realidad, las mitocondrias son unos organelos muy dinámicos, que se encuentran fusionándose y dividiéndose constantemente, pero hasta ahora no se sabe a ciencia cierta que rol cumple este proceso. Axel Kowald de la Universidad Humboldt de Berlín y Tom B. L. Kirkwood de la Universidad de Newcastle han desarrollado una teoría

El mapa de las rutas metabólicas… Animado!

¿Qué es una ruta o vía metabólica? De manera sencilla, es el flujo de reacciones que sigue un determinado compuesto al ingresar a la célula, de esta manera, se transforma en una molécula más compleja (biosíntesis o anabolismo) o en una más sencilla (degradación o catabolismo). Por ejemplo: el pan tiene una gran variedad de compuestos químicos, pero el más abundante es el almidón —presente en la harina con el que es elaborado. El almidón es degradado por una serie de reacciones químicas gracias a unas enzimas llamadas amilasas, convirtiéndose en pequeñas unidades de glucosa. La glucosa ingresa a la célula y pasa por una serie de reacciones para llegar a formar dos moléculas de piruvato. Gráficamente lo podemos ver de la siguiente manera: Esta forma de graficarla se ve muy fría y poco llamativa, es más, parece ser muy difícil de aprenderla y no nos dice nada de como es el flujo de las otras moléculas que participan en la reacción, por ejemplo: el ADP y el NADH. Además, ésta sol

Crea tus propias rutas metabólicas con PathVisio

Alguna vez se han preguntado como hacen los científicos para hacer las rutas metabólicas que vemos en los libros o en los artículos científicos? Usan programas especializados en este tipo de diseños, es algo así como un AutoCad para biólogos. Aunque también lo puedes hacer en Power Point o en Corel Draw, pero estos programas no entenderían el contexto biológico de la ruta metabólica, las conexiones entre genes y proteínas. PathVisio es una herramienta que te permite crear rutas metabólicas con significado biológico para tus presentaciones o para publicarlos en un artículo o una monografía. Y si ya eres un investigador que usa técnicas de biología molecular avanzadas como el secuenciamiento genético y los microarreglos, puedes diseñar nuevas vías metabólicas, a partir de tus resultados y exportarlos a WikiPathways . También te permite descargar rutas metabólicas y base de datos de genes de organismos modelos muy usados en biología como son de Drosophila melanogaster , Saccharomy