Ir al contenido principal

Diseñando nuevas rutas metabólicas

Las plantas son la base para la existencia de todas las formas de vida que hay sobre la tierra, ya que se encuentran en el primer nivel de la cadena alimenticia. Ellas capturan y asimilan el CO2 directamente del ambiente para transformarlo en nutrientes, que son usadas como fuente de energía tanto por las plantas como por otros organismos. La forma como asimilan el CO2 es a través del ciclo de Calvin-Benson siendo la enzima RUBISCO la principal responsable de este proceso. Este ciclo combina el carbón asimilado bioquímicamente con moléculas de agua para producir una variedad de compuestos orgánicos. Sin embargo, por el hecho de que este proceso haya estado sometido a una fuerte presión evolutiva, no quiere decir que sea el más eficiente.

Nuestro deseo siempre ha sido producir más con menos, hacerlo todo más eficiente. Hemos querido modificar las plantas cultivadas de manera que puedan producir más biomasa y alimentos con las mismas condiciones de cultivo. Para ello se han usado procesos de mejoramiento genético, se han desarrollo nuevos fertilizantes, se han usado promotores de crecimiento, y hasta se han insertando genes de otras especies para darles características especiales que no las podría obtener naturalmente. Un intento fue mejorar la eficiencia de asimilación del CO2 para que la planta pueda asimilar más carbono del ambiente y pueda producir más compuestos orgánicos, sin embargo esto no ha podido ser posible aún.

Sin embargo, usando la magia de las biomatemáticas y la biología computacional, los investigadores han descubierto una nueva forma de crear rutas metabólicas más eficientes. En términos generales, este descubrimiento consiste en tomar partes diseñadas por la naturaleza, seleccionar las mejores y reconectarlas para crear nuevas rutas metabólicas más eficientes, con nuevas características y hasta con nuevas funciones, capaz de acabar con todas las necesidades del hombre.

Así que estos investigadores diseñaron algoritmos que podrían hacer combinaciones de las más de 5000 enzimas metabólicas conocidas por la ciencia. Por ejemplo, podríamos encontrar todas las enzimas relacionadas con la fijación del CO2, seleccionar aquella que asimile la mayor cantidad de carbono con el menor consumo de energía y reconectarla con las otras enzimas envueltas en el proceso para generar una nueva ruta metabólica. Es como crear una nueva ruta metabólica desde cero, más conocido como biología sintética.

Al hacer este proceso se encontró una familia de reacciones químicas llevadas a cabo por ciertas enzimas que pueden generar una ruta metabólica artificial llamada: malonil-CoA-oxaloacetato-glioxilato (MOG, para abreviar), que podría ser de dos a tres veces más eficiente que el ciclo de Calvin-Benson. Aunque por ahora el ciclo MOG solo existe en los campos de cultivo de las computadoras (in silico), las enzimas relacionadas con esta ruta metabólica artificial puede ser encontrada en muchas especies de bacterias. Así que usando los principios de la biología sintética, se podría diseñar una bacteria capaz de realizar el ciclo MOG in vivo. Si se obtiene esta bacteria, por qué no pensar en hacerlo en tejidos vegetales.

La evolución pudo haber llegado a esta solución sin la introgresión del hombre; sin embargo, la madre naturaleza también tuvo que preocuparse por las plagas, la disponibilidad de nutrientes y agua, y otros factores que nuestros agricultores modernos lo tienen bajo control. Lo agricultores tratan de optimizar una cosa diferente de lo que la naturaleza trata de optimizar.

Vía Wired Science, PNAS.

Comentarios

Entradas más populares de este blog

¿Qué fue del estudio más grande sobre la seguridad de los transgénicos?

La tarde del 11 de noviembre de 2014, en un hotel londinense, se anuncia el lanzamiento de " Factor GMO ", el experimento a largo plazo más extenso y detallado jamás realizado sobre un alimento transgénico y su plaguicida asociado. Con un costo estimado de 25 millones de dólares , el estudio buscaba aportar —con una solidez sin precedentes— valiosa información para permitir a las autoridades reguladoras, los gobiernos y la población general, responder si es seguro el consumo de Organismos Genéticamente Modificados (OGM) o la exposición a su herbicida asociado en condiciones reales. El experimento —que se llevaría a cabo en un laboratorio secreto en el territorio ruso para evitar cualquier injerencia externa— consistía en someter a 6.000 ratas de laboratorio a diversas dietas basadas en el maíz transgénico NK603 y su herbicida asociado (RoundUp), cuyo principio activo es el glifosato . Es similar al famoso  estudio realizado Guilles-Eric Seralini , pero a mayor esc

La Enciclopedia de los Factores de Transcripción

Los Factores de Transcripción ( FT ) son un grupo de proteínas encargadas de modular la expresión de una gran variedad de genes. En otras palabras, son los interruptores genéticos . Están presentes en casi todos los sistemas bioquímicos de las células eucariotas, creando “programas regulatorios” que definen los diversos estados de desarrollo de un organismo así como su adaptación a una gran variedad de ambientes diferentes. Y a pesar de conformar sólo un pequeño porcentaje de todas las proteínas codificadas por el genoma de un organismo —5% en el caso de los humanos— más del 15% de los estudios genéticos realizados a la fecha identifican y analizan el papel de los FT en su regulación. Actualmente, las investigaciones sobre los FT están enfocados en descifrar los complejos programas regulatorios que permiten a las células de un organismo —todas con el mismo genoma—diferenciarse en cientos de tipos diferentes de células, cada una con un fenotipo específico. Por ejemplo, cuando un esp

¿Por qué el tucán tiene un pico tan grande?

Los tucanes ostentan picos enormes y vistosos. Yo pensaba que era producto de la selección sexual, es decir, mejoraba sus chances de conseguir a una buena tucana con quien aparearse y heredar sus genes a la siguiente generación. Sin embargo, habían investigadores que creían que los enormes picos eran un horrible vestigio de algún ancestro primitivo. Pero la verdadera razón era otra según concluye un estudio publicado en Science . Los animales nos podemos catergorizar en dos tipos: los homeotermos (o endotermos) y los poiquilotermos (o ectotermos). Los homeotermos (aves y mamíferos) somos capaces de mantener una temperatura corporal constante (en nuestro caso 37ºC). Cualquier desvío abrupto podría generarnos problemas. Mientras que los poiquilotermos (reptiles) suelen tomar largas horas de sol para calentar su cuerpo y permitir que su metabolismo funcione correctamente. Los seres humanos, por ejemplo, para mantener una temperatura constante sudamos o quemamos nuestras reservas d