Ir al contenido principal

Un reto a la determinación del sexo

Empecemos por lo más fácil. Todos los animales superiores —haciendo referencia a los vertebrados— se pueden diferenciar claramente entre un macho y una hembra, ya sea a simple vista o hurgando un poquito más entre las piernas. Entonces, ¿cuál es la diferencia entre un macho y una hembra, genéticamente hablando? En los mamíferos, los machos son XY y las hembras XX; en los ornitorrincos —conocidos comúnmente como “los mamíferos que ponen huevos”— tienen 10 cromosomas sexuales, siendo machos los XYXYXYXYXY; y en las aves tenemos a los cromosomas Z y W, siendo machos los ZZ y hembras los ZW.

En los mamíferos, lo que principalmente determina el sexo son los testículos, los ovarios y las hormonas que estos órganos (gónadas) producen. Si se produce testosterona, el individuo desarrollará tejidos masculinos, a pesar que sus células sean genéticamente femeninas (XX); por otro lado, si se produce estrógeno, se desarrollarán tejidos femeninos, a pesar que sus células tengan el cromosoma Y. Sin embargo, estos defectos son muy poco frecuentes porque, a pesar de que el cromosoma Y es chiquitito comparado con el X, tiene un gen fundamental para el buen desarrollo sexual de las gónadas: el gen SRY. Este gen hará que las células germinales de los órganos sexuales se desarrollen en testículos, los cuales liberarán la testosterona para diferenciar a un individuo como masculino. En ausencia de este gen, que puede ser en un XX o un XY cuyo Y ha perdido el gen SRY, las células germinales formarán un ovario, formando un individuo femenino.

gynandromorphous Pero, como en el mundo natural no todo es tan natural como parece, ciertos pollos tienen tanto células masculinas como femeninas al mismo tiempo, es más, la mitad de su cuerpo es ZZ (genéticamente macho) mientras que la otra mitad es ZW. A estos individuos se les llama ginandromorfos. El lado masculino del pollo es más corpulento, tiene espolones y sus plumas son mas oscuras; mientras que el otro lado, es más delgado, plumas más claras, sin espolones y cresta pequeña. A pesar que los dos lados del pollo estén sometidos a las mismas dosis de hormonas, son sexualmente diferentes!. Entonces, en las aves, especialmente en los pollos, la determinación del sexo es únicamente de forma genética, diferenciándose del patrón mamífero, el cual era considerado universal para todos los vertebrados.

Investigadores de la Universidad de Edimburgo, liderados por Debiao Zhao estudiaron a tres de estos pollos: uno tenía un testículo en el lado masculino, el otro tenía un ovario en el lado femenino y el tercero tenía un extraño órgano híbrido, parte ovario y parte testículo. Cada órgano bombea una determinada hormona, pero cada lado del pollo responde de manera diferente, ¿por que?.

Para eso marcaron las células embrionarias sexuales con la proteína verde fluorescente (GFP). Si se observa un brillo verde bajo la luz UV, la célula marcada estará presente. Así que trasplantaron células embrionarias sexuales de un animal al otro. Si la célula trasplantada era del mismo sexo que las células receptoras, esta se integraba al tejido y desarrollaba el órgano sexual correspondiente. Pero, si la célula trasplantada era del sexo opuesto, esta era desterrada del tejido. En mamíferos, específicamente en ratones, cuando se hace este mismo experimento, la célula XX puede integrarse y formar parte del testículo, tal como la célula XY puede integrarse y formar parte del ovario. En cambio en las aves no pasa esto, las células mantienen su identidad sexual a pesar de ser puestos en nuevos entornos, con una alta presión hormonal.

Los científicos también crearon órganos híbridos, “ovo-testículos”, trasplantando varias células femeninas en un embrión masculino. A pesar que las células femeninas estaba rodeadas de muchas masculinas, no les importó y empezaron a desarrollar el tejido para el cual estaba programadas, el ovario.

Este estudio ha puesto en evidencia que no basta con tener una carga hormonal determinada para diferenciar un sexo del otro, tampoco la carga genética es suficiente para la determinación del sexo, hay muchos mecanismos que aún no han sido estudiado, sobre todo en animales inferiores como los insectos, nemátodos, platelmintos, etc.

Referencia:

SEX DETERMINATION. An avian sexual revolution. Lindsey A. Barske and Blanche Capel. Nature.

Comentarios

Entradas más populares de este blog

Fusión y fisión de mitocondrias

Se cree que los procariotas aparecieron en el planeta hace unos 3,500 millones de años, mientras que los eucariotas lo hicieron hace unos 2,000 millones de años. Pero, si los procariotas llevan una ventaja de 1,500 millones de años a los eucariotas, ¿por qué ellos no son los organismos más complejos? La respuesta son las mitocondrias [Les recomiendo leer este artículo publicado en el blog]. Todos conocemos a las mitocondrias, si no las recuerdan, aquí se las presento. Tal vez la imagen que tenemos de ellas es que se encuentran diseminadas por toda la célula, aisladas unas de otras o, a lo mucho, reuniéndose en pequeños grupos. Sin embargo, esto no es así. En realidad, las mitocondrias son unos organelos muy dinámicos, que se encuentran fusionándose y dividiéndose constantemente, pero hasta ahora no se sabe a ciencia cierta que rol cumple este proceso. Axel Kowald de la Universidad Humboldt de Berlín y Tom B. L. Kirkwood de la Universidad de Newcastle han desarrollado una teoría

El mapa de las rutas metabólicas… Animado!

¿Qué es una ruta o vía metabólica? De manera sencilla, es el flujo de reacciones que sigue un determinado compuesto al ingresar a la célula, de esta manera, se transforma en una molécula más compleja (biosíntesis o anabolismo) o en una más sencilla (degradación o catabolismo). Por ejemplo: el pan tiene una gran variedad de compuestos químicos, pero el más abundante es el almidón —presente en la harina con el que es elaborado. El almidón es degradado por una serie de reacciones químicas gracias a unas enzimas llamadas amilasas, convirtiéndose en pequeñas unidades de glucosa. La glucosa ingresa a la célula y pasa por una serie de reacciones para llegar a formar dos moléculas de piruvato. Gráficamente lo podemos ver de la siguiente manera: Esta forma de graficarla se ve muy fría y poco llamativa, es más, parece ser muy difícil de aprenderla y no nos dice nada de como es el flujo de las otras moléculas que participan en la reacción, por ejemplo: el ADP y el NADH. Además, ésta sol

Crea tus propias rutas metabólicas con PathVisio

Alguna vez se han preguntado como hacen los científicos para hacer las rutas metabólicas que vemos en los libros o en los artículos científicos? Usan programas especializados en este tipo de diseños, es algo así como un AutoCad para biólogos. Aunque también lo puedes hacer en Power Point o en Corel Draw, pero estos programas no entenderían el contexto biológico de la ruta metabólica, las conexiones entre genes y proteínas. PathVisio es una herramienta que te permite crear rutas metabólicas con significado biológico para tus presentaciones o para publicarlos en un artículo o una monografía. Y si ya eres un investigador que usa técnicas de biología molecular avanzadas como el secuenciamiento genético y los microarreglos, puedes diseñar nuevas vías metabólicas, a partir de tus resultados y exportarlos a WikiPathways . También te permite descargar rutas metabólicas y base de datos de genes de organismos modelos muy usados en biología como son de Drosophila melanogaster , Saccharomy