Ir al contenido principal

Qué tenemos en los intestinos?

ResearchBlogging.orgTenemos aproximadamente 10 trillones de células en nuestro cuerpo, pero, por cada célula tenemos 10 bacterias, las cuales suman 100 trillones, y por cada gen que tenemos hay 100 genes bacterianos. Al parecer nuestro cuerpo está hecho de bacterias las cuales habitan principalmente la parte interna de nuestros intestinos, tanto el grueso como el delgado. ¿No creen que toda esta cantidad de inquilinos influyan, de alguna manera, en nuestra fisiología?. Cuanta diversidad genética tenemos dentro de nuestro propio organismo, cuantos genes que codifican proteínas que nuestro propio genoma no lo puede hacer, ¿como estudiar todo esto?

Para responder estas preguntas, científicos liderados por Junjie Qin de la BGI-Shenzhen de China, usaron la metagenómica. Pero, ¿que es exactamente la metagenómica?. En términos sencillos es secuenciar y analizar el material genético de toda una muestra, sin la necesidad de aislar y cultivar cada uno de los organismos que estén presentes en ella. Esto significa un ahorro de tiempo y dinero. Además, comparando los genes encontrados con una base de datos genético, podemos identificar que especies hay en la muestra y cuales son sus funciones.

Entonces, Qin et al. recolectaron la caquita de 124 individuos europeos (españoles y daneses), tanto de personas sanas como otras con obesidad y pacientes con enfermedades inflamatorias intestinales —úlceras y la enfermedad de Crohn. Extrajeron todo el ADN de estas muestras de heces y las secuenciaron usando un Analizador de Genoma de Illumina. El equipo encontró 3.3 millones de ORFs con una longitud promedio de 704pb. Un ORFs es una secuencia de ADN que podría codificar para una proteína ya que cuenta con el codón de inicio y el codón de terminación, en otras palabras, podría ser un gen. Estos 3.3 millones de ORFs fueron comparados con los 319812 genes de los 89 microorganismos que viven en nuestros intestinos y que tienen sus genomas secuenciados. El 80% de estos eran similares con los ORFs en al menos el 80% de su secuencia. De los 3.3 millones de ORFs, 294 mil estaban presentes en al menos el 50% de los individuos, a los cuales se les llamó “genes comunes”. Cada individuo cargaba un promedio de 500 mil ORFs, de los cuales 204 mil era los genes comunes (38%).

Lo que llamó mucho la atención fue que los pacientes con enfermedades intestinales tenían 25% menos genes que los individuos sanos. Entonces se analizó y comparó los microorganismos presentes en los individuos sanos y enfermos. Se observó claras diferencias entre la microbiota de estos individuos. Los que sufrían de la enfermedad de Crohn formaban un clúster diferenciado de los que tenían ulceras intestinales y de los individuos sanos. Entonces, los microorganismos de nuestros intestinos son importantes para estar sanos, y de repente, la hipótesis de que están relacionados con la obesidad y sobrepeso sea cierta.

gut_microbes

Pero, ¿cuáles son las bacterias más comunes que habitan nuestros intestinos? Para responder esta pregunta, los investigadores alinearon las secuencias del metagenoma hallado con los genomas de las 650 especies de arqueas y bacterias que ya han sido secuenciados. Se encontraron que todos los individuos compartían 17 especies, 57 en más del 90% y 75 en el 50%. Las especies más abundantes pertenecían a los miembros del grupo de los Bacteroides y Dorel/Eubacterium/Ruminococcus así como también miembros de los grupos de las Bifidobacterias, Proteobacterias y streptococcus/lactobacilus.

Finalmente, se estudió las funciones de los genes encontrados y estos pertenecían a dos grupos: aquellos que son requeridos por todas las bacterias para poder vivir y aquellos que son específicos para vivir en los intestinos. Entre los genes del primer grupo tenemos a los que tienen funciones en las rutas metabólicas primarias (el metabolismo del carbono y síntesis de aminoácidos) así como importantes complejos proteicos (ADN y ARN polimerasas, ATPasas); y los genes del segundo grupo encontramos proteínas envueltas en la adhesión a las células del intestino (colágeno, fibrinógeno, fibronectina) y enzimas para degradar otro tipo de azúcares.

gut_microbiota a. Rutas metabólicas encontradas en la microbiota intestinal. b. Funciones de los genes encontrados.

Se ve que casi el 75% de los genes encontrados están dentro de uno de los grupos funcionales. De la fracción conocida el 5% codifica para proteínas relacionadas con los bacteriófagos, lo cual indica que son importantes para mantener la homeostasis intestinal. También se encontraron una variedad de genes de metabolismo secundario que tienen la capacidad de producir enzimas capaces de degradar pectina, sorbitol y otros azúcares complejos, los cuales que están presentes en las frutas y verduras que comemos y que nuestro organismo es incapaz de metabolizar.

Además, estos microorganismos producen ciertos compuestos que son importantes para el buen funcionamiento de nuestro organismo tales como el acetato (importante para las células musculares, cerebrales y del corazón), el propionato (usado en el proceso de la neoglucogénesis), el butirato (importante para los enterocitos), muchos aminoácidos indispensables para el hombre, vitaminas. También tienen la capacidad de degradar muchos compuestos xenobióticos.

Como podemos ver, nuestros bichos son de vital importancia para nosotros, pero no por eso vamos a comer con las manos sucias con el objeto de “aumentar nuestra flora intestinal”, o vamos a comer un cebiche en “la Parada” o una papa a la huancaína en Gamarra, ya que un pequeño desbalance en la microbiota puede ser muy perjudicial para la salud.

Referencia:

Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T., Mende, D., Li, J., Xu, J., Li, S., Li, D., Cao, J., Wang, B., Liang, H., Zheng, H., Xie, Y., Tap, J., Lepage, P., Bertalan, M., Batto, J., Hansen, T., Le Paslier, D., Linneberg, A., Nielsen, H., Pelletier, E., Renault, P., Sicheritz-Ponten, T., Turner, K., Zhu, H., Yu, C., Li, S., Jian, M., Zhou, Y., Li, Y., Zhang, X., Li, S., Qin, N., Yang, H., Wang, J., Brunak, S., Doré, J., Guarner, F., Kristiansen, K., Pedersen, O., Parkhill, J., Weissenbach, J., Antolin, M., Artiguenave, F., Blottiere, H., Borruel, N., Bruls, T., Casellas, F., Chervaux, C., Cultrone, A., Delorme, C., Denariaz, G., Dervyn, R., Forte, M., Friss, C., van de Guchte, M., Guedon, E., Haimet, F., Jamet, A., Juste, C., Kaci, G., Kleerebezem, M., Knol, J., Kristensen, M., Layec, S., Le Roux, K., Leclerc, M., Maguin, E., Melo Minardi, R., Oozeer, R., Rescigno, M., Sanchez, N., Tims, S., Torrejon, T., Varela, E., de Vos, W., Winogradsky, Y., Zoetendal, E., Bork, P., Ehrlich, S., & Wang, J. (2010). A human gut microbial gene catalogue established by metagenomic sequencing Nature, 464 (7285), 59-65 DOI: 10.1038/nature08821

Etiquetas de Technorati:

Comentarios

Entradas más populares de este blog

Fusión y fisión de mitocondrias

Se cree que los procariotas aparecieron en el planeta hace unos 3,500 millones de años, mientras que los eucariotas lo hicieron hace unos 2,000 millones de años. Pero, si los procariotas llevan una ventaja de 1,500 millones de años a los eucariotas, ¿por qué ellos no son los organismos más complejos? La respuesta son las mitocondrias [Les recomiendo leer este artículo publicado en el blog]. Todos conocemos a las mitocondrias, si no las recuerdan, aquí se las presento. Tal vez la imagen que tenemos de ellas es que se encuentran diseminadas por toda la célula, aisladas unas de otras o, a lo mucho, reuniéndose en pequeños grupos. Sin embargo, esto no es así. En realidad, las mitocondrias son unos organelos muy dinámicos, que se encuentran fusionándose y dividiéndose constantemente, pero hasta ahora no se sabe a ciencia cierta que rol cumple este proceso. Axel Kowald de la Universidad Humboldt de Berlín y Tom B. L. Kirkwood de la Universidad de Newcastle han desarrollado una teoría

El mapa de las rutas metabólicas… Animado!

¿Qué es una ruta o vía metabólica? De manera sencilla, es el flujo de reacciones que sigue un determinado compuesto al ingresar a la célula, de esta manera, se transforma en una molécula más compleja (biosíntesis o anabolismo) o en una más sencilla (degradación o catabolismo). Por ejemplo: el pan tiene una gran variedad de compuestos químicos, pero el más abundante es el almidón —presente en la harina con el que es elaborado. El almidón es degradado por una serie de reacciones químicas gracias a unas enzimas llamadas amilasas, convirtiéndose en pequeñas unidades de glucosa. La glucosa ingresa a la célula y pasa por una serie de reacciones para llegar a formar dos moléculas de piruvato. Gráficamente lo podemos ver de la siguiente manera: Esta forma de graficarla se ve muy fría y poco llamativa, es más, parece ser muy difícil de aprenderla y no nos dice nada de como es el flujo de las otras moléculas que participan en la reacción, por ejemplo: el ADP y el NADH. Además, ésta sol

Crea tus propias rutas metabólicas con PathVisio

Alguna vez se han preguntado como hacen los científicos para hacer las rutas metabólicas que vemos en los libros o en los artículos científicos? Usan programas especializados en este tipo de diseños, es algo así como un AutoCad para biólogos. Aunque también lo puedes hacer en Power Point o en Corel Draw, pero estos programas no entenderían el contexto biológico de la ruta metabólica, las conexiones entre genes y proteínas. PathVisio es una herramienta que te permite crear rutas metabólicas con significado biológico para tus presentaciones o para publicarlos en un artículo o una monografía. Y si ya eres un investigador que usa técnicas de biología molecular avanzadas como el secuenciamiento genético y los microarreglos, puedes diseñar nuevas vías metabólicas, a partir de tus resultados y exportarlos a WikiPathways . También te permite descargar rutas metabólicas y base de datos de genes de organismos modelos muy usados en biología como son de Drosophila melanogaster , Saccharomy