Ir al contenido principal

Llegó el día soñado para el LHC

Después de 15 años de haberlo planeado, de esperar por la construcción, de sufrir retrasos y de vivir un drama, por fin el Gran Colisionador de Hadrones hace para lo que estaba diseñado hacer… colisionar partículas!

Al rededor de las 13:00 (hora de Ginebra), los físicos guiaron dos rayos de protones de 3.5 trillones de electrón-voltios (TeV) cada uno, por el gran acelerador de partículas de 27Km de diámetro y los hicieron chocar frontalmente… después de unos segundos de silencio sepulcral, estallaron vítores en las salas de control de los cuatro principales experimentos, como una ametralladora, los productos de la colisión inundaban los detectores.

Si bien 3.5 trillones de electrón-voltios parece una cantidad de energía inimaginable, sólo es suficiente como para mantener un mosquito en vuelo. Pero, para un protón, esta energía es recontra-super-extra-archi-inmensa, y cuando dos protones se mueven a velocidades cercanas a la de la luz, la energía cinética que poseen es similar a la de un buque de guerra moviéndose a varios kilómetros por hora, así que la fuerza del choque será tan grande que despedazará los protones en quien sabe qué.

Sin embargo, el LHC ha sido diseñado para choques de partículas a 7TeV cada una. Así que hoy se dio el primer gran paso, el inicio de las investigaciones en la confirmación o rechazo de muchas de las teorías de la física de partículas como el mecanismo de Higgs que dota a toda la materia de masa. También se descubrirán nuevos fenómenos físicos que van más allá del “modelo estándar” los cuales podrían ayudar a explicar algunos misterios de la física como “la materia oscura” que conforma casi el 85% de toda la materia del universo.

A partir de mañana, el LHC trabajará de manera continua entre de 18 a 24 meses, luego será apagado por aproximadamente un año y se preparará para su colisión de 14TeV. Por ahora sólo hará choques de 7TeV hasta setiembre del 2011. Mañana también empezará la cobertura del funcionamiento del LHC vía web [http://webcast.cern.ch/lhcfirstphysics/]

Vía Nature Blogs, Wired, Ars Technica.

Comentarios

Entradas más populares de este blog

Fusión y fisión de mitocondrias

Se cree que los procariotas aparecieron en el planeta hace unos 3,500 millones de años, mientras que los eucariotas lo hicieron hace unos 2,000 millones de años. Pero, si los procariotas llevan una ventaja de 1,500 millones de años a los eucariotas, ¿por qué ellos no son los organismos más complejos? La respuesta son las mitocondrias [Les recomiendo leer este artículo publicado en el blog]. Todos conocemos a las mitocondrias, si no las recuerdan, aquí se las presento. Tal vez la imagen que tenemos de ellas es que se encuentran diseminadas por toda la célula, aisladas unas de otras o, a lo mucho, reuniéndose en pequeños grupos. Sin embargo, esto no es así. En realidad, las mitocondrias son unos organelos muy dinámicos, que se encuentran fusionándose y dividiéndose constantemente, pero hasta ahora no se sabe a ciencia cierta que rol cumple este proceso. Axel Kowald de la Universidad Humboldt de Berlín y Tom B. L. Kirkwood de la Universidad de Newcastle han desarrollado una teoría

El mapa de las rutas metabólicas… Animado!

¿Qué es una ruta o vía metabólica? De manera sencilla, es el flujo de reacciones que sigue un determinado compuesto al ingresar a la célula, de esta manera, se transforma en una molécula más compleja (biosíntesis o anabolismo) o en una más sencilla (degradación o catabolismo). Por ejemplo: el pan tiene una gran variedad de compuestos químicos, pero el más abundante es el almidón —presente en la harina con el que es elaborado. El almidón es degradado por una serie de reacciones químicas gracias a unas enzimas llamadas amilasas, convirtiéndose en pequeñas unidades de glucosa. La glucosa ingresa a la célula y pasa por una serie de reacciones para llegar a formar dos moléculas de piruvato. Gráficamente lo podemos ver de la siguiente manera: Esta forma de graficarla se ve muy fría y poco llamativa, es más, parece ser muy difícil de aprenderla y no nos dice nada de como es el flujo de las otras moléculas que participan en la reacción, por ejemplo: el ADP y el NADH. Además, ésta sol

Crea tus propias rutas metabólicas con PathVisio

Alguna vez se han preguntado como hacen los científicos para hacer las rutas metabólicas que vemos en los libros o en los artículos científicos? Usan programas especializados en este tipo de diseños, es algo así como un AutoCad para biólogos. Aunque también lo puedes hacer en Power Point o en Corel Draw, pero estos programas no entenderían el contexto biológico de la ruta metabólica, las conexiones entre genes y proteínas. PathVisio es una herramienta que te permite crear rutas metabólicas con significado biológico para tus presentaciones o para publicarlos en un artículo o una monografía. Y si ya eres un investigador que usa técnicas de biología molecular avanzadas como el secuenciamiento genético y los microarreglos, puedes diseñar nuevas vías metabólicas, a partir de tus resultados y exportarlos a WikiPathways . También te permite descargar rutas metabólicas y base de datos de genes de organismos modelos muy usados en biología como son de Drosophila melanogaster , Saccharomy